Liu Youfang, Li Yi-Ju, Satten Glen A, Allen Andrew S, Tzeng Jung-Ying
Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27569-7566, USA.
Ann Hum Genet. 2009 Sep;73(Pt 5):520-6. doi: 10.1111/j.1469-1809.2009.00536.x. Epub 2009 Jul 20.
Association methods based on haplotype similarity (HS) can overcome power and stability issues encountered in standard haplotype analyses. Current HS methods can be generally classified into evolutionary and two-sample approaches. We propose a new regression-based HS association method for case-control studies that incorporates covariate information and combines the advantages of the two classes of approaches by using inferred ancestral haplotypes. We first estimate the ancestral haplotypes of case individuals and then, for each individual, an ancestral-haplotype-based similarity score is computed by comparing that individual's observed genotype with the estimated ancestral haplotypes. Trait values are then regressed on the similarity scores. Covariates can easily be incorporated into this regression framework. To account for the bias in the raw p-values due to the use of case data in constructing ancestral haplotypes, as well as to account for variation in ancestral haplotype estimation, a permutation procedure is adopted to obtain empirical p-values. Compared with the standard haplotype score test and the multilocus T(2) test, our method improves power when neither the allele frequency nor linkage disequilibrium between the disease locus and its neighboring SNPs is too low and is comparable in other scenarios. We applied our method to the Genetic Analysis Workshop 15 simulated SNP data and successfully pinpointed a stretch of SNPs that covers the fine-scale region where the causal locus is located.
基于单倍型相似性(HS)的关联方法能够克服标准单倍型分析中遇到的效能和稳定性问题。当前的HS方法通常可分为进化法和两样本法。我们提出了一种用于病例对照研究的基于回归的新型HS关联方法,该方法纳入协变量信息,并通过使用推断的祖先单倍型融合了这两类方法的优点。我们首先估计病例个体的祖先单倍型,然后,对于每个个体,通过将该个体观察到的基因型与估计的祖先单倍型进行比较来计算基于祖先单倍型的相似性得分。然后将性状值对相似性得分进行回归分析。协变量能够轻松纳入此回归框架。为了校正由于在构建祖先单倍型时使用病例数据而导致的原始p值偏差,以及考虑祖先单倍型估计中的变异,采用了一种置换程序来获得经验p值。与标准单倍型得分检验和多位点T(2)检验相比,当疾病位点与其相邻单核苷酸多态性(SNP)之间的等位基因频率和连锁不平衡都不太低时,我们的方法提高了效能,在其他情况下具有可比性。我们将我们的方法应用于遗传分析研讨会15的模拟SNP数据,并成功定位了一段覆盖因果位点所在精细区域的SNP。