Suppr超能文献

糖尿病大鼠的早期神经和血管功能障碍主要是山梨醇氧化增加的后果。

Early neural and vascular dysfunctions in diabetic rats are largely sequelae of increased sorbitol oxidation.

机构信息

Boston Medical Center, EBRC 820, Diabetes & Metabolism Unit, Department of Medicine, Boston University School of Medicine, Boston, MA, USA.

出版信息

Antioxid Redox Signal. 2010 Jan;12(1):39-51. doi: 10.1089/ars.2009.2502.

Abstract

These experiments were undertaken to assess the importance of cytoplasmic (c) sorbitol oxidation versus mitochondrial (m) pyruvate oxidation in mediating neural and vascular dysfunction attributable to hyperglycemia in diabetic rats. Increased oxidation of sorbitol is coupled to enzymatic reduction of free oxidized NAD(+)c to reduced NADHc, manifested by an increased ratio of NADH to NAD(+)c. Likewise, increased oxidation of pyruvate is coupled to reduction of NAD(+)m to NADHm, which increases the NADH/NAD(+)m ratio. Specific inhibitors of sorbitol production or sorbitol oxidation normalized: increased diabetic nerve NADH/NAD(+)c, impaired nerve-conduction velocity, and vascular dysfunction in sciatic nerve, retina, and aorta; however, they had little or no impact on increased NADH/NAD(+)m. These observations provide, for the first time, strong in vivo evidence for the primacy of sorbitol oxidation versus. pyruvate oxidation in mediating the metabolic imbalances, impaired nerve conduction, and vascular dysfunction evoked by diabetes. These findings are consistent with (a) the fact that oxidation of sorbitol produces "prooxidant" NADHc uncoupled from subsequent production of "antioxidant" pyruvate required for reoxidation of NADHc to NAD(+)c by lactate dehydrogenase, and (b) the hypothesis that neural and vascular dysfunction in early diabetes are caused primarily by increased NADHc, which fuels superoxide production by NADH-driven oxidases.

摘要

这些实验旨在评估细胞质(c)山梨醇氧化与线粒体(m)丙酮酸氧化在介导糖尿病大鼠高血糖引起的神经和血管功能障碍中的重要性。山梨醇的氧化增加与游离氧化 NAD(+)c 到还原 NADHc 的酶促还原偶联,表现为 NADH 与 NAD(+)c 的比值增加。同样,丙酮酸氧化增加与 NAD(+)m 到 NADHm 的还原偶联,这增加了 NADH/NAD(+)m 的比值。山梨醇产生或山梨醇氧化的特异性抑制剂使:糖尿病神经 NADH/NAD(+)c 增加、神经传导速度受损和坐骨神经、视网膜和主动脉血管功能障碍正常化;然而,它们对增加的 NADH/NAD(+)m 几乎没有或没有影响。这些观察结果首次提供了强有力的体内证据,证明山梨醇氧化相对于丙酮酸氧化在介导糖尿病引起的代谢失衡、神经传导受损和血管功能障碍方面具有首要作用。这些发现与以下事实一致:(a)山梨醇的氧化产生与随后产生的“抗氧化剂”丙酮酸解偶联的“促氧化剂”NADHc,而丙酮酸是通过乳酸脱氢酶将 NADHc 再氧化为 NAD(+)c 所必需的;(b)神经和血管功能障碍在早期糖尿病中主要是由 NADHc 增加引起的,NADH 驱动的氧化酶通过 NADH 产生超氧化物。

相似文献

1
3
Interactions between the sorbitol pathway, non-enzymatic glycation, and diabetic vascular dysfunction.
Nephrol Dial Transplant. 1996;11 Suppl 5:72-5. doi: 10.1093/ndt/11.supp5.72.
4
Interactions between hyperglycemia and hypoxia: implications for diabetic retinopathy.
Diabetes. 2004 Nov;53(11):2931-8. doi: 10.2337/diabetes.53.11.2931.

引用本文的文献

2
Epigenetic basis of diabetic vasculopathy.
Front Endocrinol (Lausanne). 2022 Dec 9;13:989844. doi: 10.3389/fendo.2022.989844. eCollection 2022.
4
Mitochondria in Diabetic Kidney Disease.
Cells. 2021 Oct 29;10(11):2945. doi: 10.3390/cells10112945.
5
Role of the Polyol Pathway in Locomotor Recovery and Wallerian Degeneration after Spinal Cord Contusion Injury.
Neurotrauma Rep. 2021 Sep 14;2(1):411-423. doi: 10.1089/neur.2021.0018. eCollection 2021.
6
Aldose Reductase: An Emerging Target for Development of Interventions for Diabetic Cardiovascular Complications.
Front Endocrinol (Lausanne). 2021 Mar 11;12:636267. doi: 10.3389/fendo.2021.636267. eCollection 2021.
7
NAD metabolism: pathophysiologic mechanisms and therapeutic potential.
Signal Transduct Target Ther. 2020 Oct 7;5(1):227. doi: 10.1038/s41392-020-00311-7.
8
Diabetic Retinopathy: The Role of Mitochondria in the Neural Retina and Microvascular Disease.
Antioxidants (Basel). 2020 Sep 23;9(10):905. doi: 10.3390/antiox9100905.
9
Vitamin K1 prevents diabetic cataract by inhibiting lens aldose reductase 2 (ALR2) activity.
Sci Rep. 2019 Oct 11;9(1):14684. doi: 10.1038/s41598-019-51059-2.

本文引用的文献

1
Aldose reductase mediates myocardial ischemia-reperfusion injury in part by opening mitochondrial permeability transition pore.
Am J Physiol Heart Circ Physiol. 2009 Feb;296(2):H333-41. doi: 10.1152/ajpheart.01012.2008. Epub 2008 Dec 5.
2
Aldose reductase, still a compelling target for diabetic neuropathy.
Curr Drug Targets. 2008 Jan;9(1):14-36. doi: 10.2174/138945008783431781.
3
Contribution of polyol pathway to arteriolar dysfunction in hyperglycemia. Role of oxidative stress, reduced NO, and enhanced PGH(2)/TXA(2) mediation.
Am J Physiol Heart Circ Physiol. 2007 Nov;293(5):H3096-104. doi: 10.1152/ajpheart.01335.2006. Epub 2007 Sep 14.
4
The role of mitochondria in protection of the heart by preconditioning.
Biochim Biophys Acta. 2007 Aug;1767(8):1007-31. doi: 10.1016/j.bbabio.2007.05.008. Epub 2007 Jun 2.
5
Pyridine nucleotide redox abnormalities in diabetes.
Antioxid Redox Signal. 2007 Jul;9(7):931-42. doi: 10.1089/ars.2007.1630.
6
Reexamining the hyperglycemic pseudohypoxia hypothesis of diabetic oculopathy.
Invest Ophthalmol Vis Sci. 2006 Jun;47(6):2726-31. doi: 10.1167/iovs.06-0076.
7
Regulation of blood flow in activated human brain by cytosolic NADH/NAD+ ratio.
Proc Natl Acad Sci U S A. 2006 Feb 7;103(6):1964-9. doi: 10.1073/pnas.0510632103. Epub 2006 Jan 30.
8
The pathobiology of diabetic complications: a unifying mechanism.
Diabetes. 2005 Jun;54(6):1615-25. doi: 10.2337/diabetes.54.6.1615.
9
Cellular mechanisms and treatment of diabetes vascular complications converge on reactive oxygen species.
Curr Hypertens Rep. 2005 Apr;7(2):148-54. doi: 10.1007/s11906-005-0090-4.
10
Interactions between hyperglycemia and hypoxia: implications for diabetic retinopathy.
Diabetes. 2004 Nov;53(11):2931-8. doi: 10.2337/diabetes.53.11.2931.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验