Suppr超能文献

通过外周血细胞转录水平预测急性多发性硬化症复发

Prediction of acute multiple sclerosis relapses by transcription levels of peripheral blood cells.

作者信息

Gurevich Michael, Tuller Tamir, Rubinstein Udi, Or-Bach Rotem, Achiron Anat

机构信息

Multiple Sclerosis Center, Sheba Medical Center, Tel-Hashomer, Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel.

出版信息

BMC Med Genomics. 2009 Jul 22;2:46. doi: 10.1186/1755-8794-2-46.

Abstract

BACKGROUND

The ability to predict the spatial frequency of relapses in multiple sclerosis (MS) would enable physicians to decide when to intervene more aggressively and to plan clinical trials more accurately.

METHODS

In the current study our objective was to determine if subsets of genes can predict the time to the next acute relapse in patients with MS. Data-mining and predictive modeling tools were utilized to analyze a gene-expression dataset of 94 non-treated patients; 62 patients with definite MS and 32 patients with clinically isolated syndrome (CIS). The dataset included the expression levels of 10,594 genes and annotated sequences corresponding to 22,215 gene-transcripts that appear in the microarray.

RESULTS

We designed a two stage predictor. The first stage predictor was based on the expression level of 10 genes, and predicted the time to next relapse with a resolution of 500 days (error rate 0.079, p < 0.001). If the predicted relapse was to occur in less than 500 days, a second stage predictor based on an additional different set of 9 genes was used to give a more accurate estimation of the time till the next relapse (in resolution of 50 days). The error rate of the second stage predictor was 2.3 fold lower than the error rate of random predictions (error rate = 0.35, p < 0.001). The predictors were further evaluated and found effective both for untreated MS patients and for MS patients that subsequently received immunomodulatory treatments after the initial testing (the error rate of the first level predictor was < 0.18 with p < 0.001 for all the patient groups).

CONCLUSION

We conclude that gene expression analysis is a valuable tool that can be used in clinical practice to predict future MS disease activity. Similar approach can be also useful for dealing with other autoimmune diseases that characterized by relapsing-remitting nature.

摘要

背景

预测多发性硬化症(MS)复发空间频率的能力将使医生能够决定何时更积极地进行干预,并更准确地规划临床试验。

方法

在当前研究中,我们的目标是确定基因子集是否能够预测MS患者下次急性复发的时间。我们利用数据挖掘和预测建模工具分析了94例未治疗患者的基因表达数据集,其中包括62例确诊为MS的患者和32例临床孤立综合征(CIS)患者。该数据集包含10,594个基因的表达水平以及与微阵列中出现的22,215个基因转录本相对应的注释序列。

结果

我们设计了一个两阶段预测器。第一阶段预测器基于10个基因的表达水平,以500天的分辨率预测下次复发时间(错误率0.079,p < 0.001)。如果预测复发将在不到500天内发生,则使用基于另外9个不同基因集的第二阶段预测器来更准确地估计直到下次复发的时间(分辨率为50天)。第二阶段预测器的错误率比随机预测的错误率低2.3倍(错误率 = 0.35,p < 0.001)。对预测器进行了进一步评估,发现其对未治疗的MS患者以及在初始测试后随后接受免疫调节治疗的MS患者均有效(所有患者组中第一级预测器的错误率均< 0.18,p < 0.001)。

结论

我们得出结论,基因表达分析是一种有价值的工具,可用于临床实践中预测未来MS疾病活动。类似的方法对于处理其他具有复发-缓解性质的自身免疫性疾病也可能有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1697/2725113/f87c976b6119/1755-8794-2-46-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验