Suppr超能文献

一种用于组合分类器的 Hopfield 神经网络在纹理图像中的应用。

A Hopfield Neural Network for combining classifiers applied to textured images.

机构信息

Dpt. Ingeniería del Software e Inteligencia Artificial, Facultad Informática, Universidad Complutense, 28040 Madrid, Spain.

出版信息

Neural Netw. 2010 Jan;23(1):144-53. doi: 10.1016/j.neunet.2009.07.019. Epub 2009 Jul 22.

Abstract

In this paper we propose a new method for combining simple classifiers through the analogue Hopfield Neural Network (HNN) optimization paradigm for classifying natural textures in images. The base classifiers are the Fuzzy clustering (FC) and the parametric Bayesian estimator (BP). An initial unsupervised training phase determines the number of clusters and estimates the parameters for both FC and BP. Then a decision phase is carried out, where we build as many Hopfield Neural Networks as the available number of clusters. The number of nodes at each network is the number of pixels in the image which is to be classified. Each node at each network is initially loaded with a state value, which is the membership degree (provided by FC) that the node (pixel) belongs to the cluster associated to the network. Each state is later iteratively updated during the HNN optimization process taking into account the previous states and two types of external influences exerted by other nodes in its neighborhood. The external influences are mapped as consistencies. One is embedded in an energy term which considers the states of the node to be updated and the states of its neighbors. The other is mapped as the inter-connection weights between the nodes. From BP, we obtain the probabilities that the nodes (pixels) belong to a cluster (network). We define these weights as a relation between states and probabilities between the nodes in the neighborhood of the node which is being updated. This is the classifier combination, making the main finding of this paper. The proposed combined strategy based on the HNN outperforms the simple classifiers and also classical combination strategies.

摘要

在本文中,我们提出了一种新的方法,通过模拟 Hopfield 神经网络(HNN)优化范例来组合简单分类器,以对图像中的自然纹理进行分类。基础分类器是模糊聚类(FC)和参数贝叶斯估计器(BP)。一个初始的无监督训练阶段确定了聚类的数量,并为 FC 和 BP 估计参数。然后进行决策阶段,我们构建尽可能多的 Hopfield 神经网络,数量与可用的聚类数量相同。每个网络的节点数是要分类的图像的像素数。每个网络的每个节点最初都加载一个状态值,该值是节点(像素)属于与网络相关联的聚类的隶属度(由 FC 提供)。在 HNN 优化过程中,每个状态都会在考虑到先前状态和来自其邻居的两种类型的外部影响的情况下迭代更新。外部影响被映射为一致性。一种嵌入在能量项中,该能量项考虑了要更新的节点的状态及其邻居的状态。另一种映射为节点之间的连接权重。从 BP 中,我们得到了节点(像素)属于聚类(网络)的概率。我们将这些权重定义为正在更新的节点及其邻居节点之间的状态和概率之间的关系。这就是分类器组合,是本文的主要发现。基于 HNN 的提出的组合策略优于简单分类器和经典组合策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验