Todem D, Fine J, Peng L
Division of Biostatistics, Department of Epidemiology, Michigan State University, B601 West Fee Hall, East Lansing, Michigan 48823, USA.
Biometrics. 2010 Jun;66(2):558-66. doi: 10.1111/j.1541-0420.2009.01290.x. Epub 2009 Jul 23.
We consider the problem of evaluating a statistical hypothesis when some model characteristics are nonidentifiable from observed data. Such a scenario is common in meta-analysis for assessing publication bias and in longitudinal studies for evaluating a covariate effect when dropouts are likely to be nonignorable. One possible approach to this problem is to fix a minimal set of sensitivity parameters conditional upon which hypothesized parameters are identifiable. Here, we extend this idea and show how to evaluate the hypothesis of interest using an infimum statistic over the whole support of the sensitivity parameter. We characterize the limiting distribution of the statistic as a process in the sensitivity parameter, which involves a careful theoretical analysis of its behavior under model misspecification. In practice, we suggest a nonparametric bootstrap procedure to implement this infimum test as well as to construct confidence bands for simultaneous pointwise tests across all values of the sensitivity parameter, adjusting for multiple testing. The methodology's practical utility is illustrated in an analysis of a longitudinal psychiatric study.
当某些模型特征无法从观测数据中识别时,我们考虑评估统计假设的问题。这种情况在评估发表偏倚的荟萃分析以及评估协变量效应的纵向研究中很常见,在纵向研究中,失访可能不可忽略。解决这个问题的一种可能方法是固定一组最小的敏感性参数,在此条件下假设参数是可识别的。在这里,我们扩展了这个想法,并展示了如何使用敏感性参数整个支持域上的下确界统计量来评估感兴趣的假设。我们将该统计量的极限分布刻画为敏感性参数中的一个过程,这涉及对其在模型误设下的行为进行仔细的理论分析。在实践中,我们建议采用非参数自助法程序来实施这种下确界检验,并为敏感性参数的所有值同时进行逐点检验构建置信带,同时调整多重检验。通过对一项纵向精神病学研究的分析说明了该方法的实际效用。