Suppr超能文献

具有GPU加速的大规模神经网络的集体行为

Collective behavior of large-scale neural networks with GPU acceleration.

作者信息

Qu Jingyi, Wang Rubin

机构信息

Tianjin Key Laboratory for Advanced Signal Processing, Civil Aviation University of China, Tianjin, 300300 China.

Institute for Cognitive Neurodynamics, School of Science, East China University of Science and Technology, Shanghai, 200237 China.

出版信息

Cogn Neurodyn. 2017 Dec;11(6):553-563. doi: 10.1007/s11571-017-9446-0. Epub 2017 Jun 30.

Abstract

In this paper, the collective behaviors of a small-world neuronal network motivated by the anatomy of a mammalian cortex based on both Izhikevich model and Rulkov model are studied. The Izhikevich model can not only reproduce the rich behaviors of biological neurons but also has only two equations and one nonlinear term. Rulkov model is in the form of difference equations that generate a sequence of membrane potential samples in discrete moments of time to improve computational efficiency. These two models are suitable for the construction of large scale neural networks. By varying some key parameters, such as the connection probability and the number of nearest neighbor of each node, the coupled neurons will exhibit types of temporal and spatial characteristics. It is demonstrated that the implementation of GPU can achieve more and more acceleration than CPU with the increasing of neuron number and iterations. These two small-world network models and GPU acceleration give us a new opportunity to reproduce the real biological network containing a large number of neurons.

摘要

本文基于Izhikevich模型和Rulkov模型,研究了受哺乳动物皮质解剖结构启发的小世界神经元网络的集体行为。Izhikevich模型不仅可以再现生物神经元的丰富行为,而且只有两个方程和一个非线性项。Rulkov模型采用差分方程的形式,在离散时刻生成一系列膜电位样本,以提高计算效率。这两种模型适用于大规模神经网络的构建。通过改变一些关键参数,如连接概率和每个节点的最近邻数量,耦合神经元将表现出各种时间和空间特征。结果表明,随着神经元数量和迭代次数的增加,GPU的实现比CPU能实现越来越多的加速。这两种小世界网络模型和GPU加速为我们再现包含大量神经元的真实生物网络提供了新的机会。

相似文献

1
Collective behavior of large-scale neural networks with GPU acceleration.具有GPU加速的大规模神经网络的集体行为
Cogn Neurodyn. 2017 Dec;11(6):553-563. doi: 10.1007/s11571-017-9446-0. Epub 2017 Jun 30.
2
Oscillations and synchrony in a cortical neural network.皮层神经网络中的振荡与同步。
Cogn Neurodyn. 2014 Apr;8(2):157-66. doi: 10.1007/s11571-013-9268-7. Epub 2013 Sep 11.
8
Multiplierless Implementation of Noisy Izhikevich Neuron With Low-Cost Digital Design.无乘法器的噪声 Izhikevich 神经元的低成本数字设计实现。
IEEE Trans Biomed Circuits Syst. 2018 Dec;12(6):1422-1430. doi: 10.1109/TBCAS.2018.2868746. Epub 2018 Sep 4.
10
A brief history of excitable map-based neurons and neural networks.基于兴奋型神经元和神经网络的简史。
J Neurosci Methods. 2013 Nov 15;220(2):116-30. doi: 10.1016/j.jneumeth.2013.07.014. Epub 2013 Jul 31.

引用本文的文献

本文引用的文献

1
Oscillations and synchrony in a cortical neural network.皮层神经网络中的振荡与同步。
Cogn Neurodyn. 2014 Apr;8(2):157-66. doi: 10.1007/s11571-013-9268-7. Epub 2013 Sep 11.
2
Synchronization study in ring-like and grid-like neuronal networks.环形和网格状神经元网络中的同步研究。
Cogn Neurodyn. 2012 Feb;6(1):21-31. doi: 10.1007/s11571-011-9174-9. Epub 2011 Sep 13.
4
Oscillations and synchrony in large-scale cortical network models.大规模皮层网络模型中的振荡与同步
J Biol Phys. 2008 Aug;34(3-4):279-99. doi: 10.1007/s10867-008-9079-y. Epub 2008 Jun 17.
6
Some models of neuronal variability.神经元变异性的一些模型。
Biophys J. 1967 Jan;7(1):37-68. doi: 10.1016/S0006-3495(67)86574-3. Epub 2008 Dec 31.
7
A small world of neuronal synchrony.神经元同步的小世界。
Cereb Cortex. 2008 Dec;18(12):2891-901. doi: 10.1093/cercor/bhn047. Epub 2008 Apr 9.
8
Simple model of spiking neurons.脉冲神经元的简单模型。
IEEE Trans Neural Netw. 2003;14(6):1569-72. doi: 10.1109/TNN.2003.820440.
9
Stochastic resonance on excitable small-world networks via a pacemaker.通过起搏器在可兴奋小世界网络上的随机共振。
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Dec;76(6 Pt 2):066203. doi: 10.1103/PhysRevE.76.066203. Epub 2007 Dec 11.
10
Small-world brain networks.小世界脑网络。
Neuroscientist. 2006 Dec;12(6):512-23. doi: 10.1177/1073858406293182.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验