Davern Michael, Ruggles Steven, Swenson Tami, Alexander J Trent, Oakes J Michael
Minnesota Population Center, University of Minnesota, USA.
Demography. 2009 Aug;46(3):589-603. doi: 10.1353/dem.0.0062.
Virtually all quantitative microdata used by social scientists derive from samples that incorporate clustering, stratification, and weighting adjustments (Kish 1965, 1992). Such data can yield standard error estimates that differ dramatically from those derived from a simple random sample of the same size. Researchers using historical U.S. census microdata, however, usually apply methods designed for simple random samples. The resulting p values and confidence intervals could be inaccurate and could lead to erroneous research conclusions. Because U.S. census microdata samples are among the most widely used sources for social science and policy research, the need for reliable standard error estimation is critical. We evaluate the historical microdata samples of the Integrated Public Use Microdata Series (IPUMS) project from 1850 to 1950 in order to determine (1) the impact of sample design on standard error estimates, and (2) how to apply modern standard error estimation software to historical census samples. We exploit a unique new data source from the 1880 census to validate our methods for standard error estimation, and then we apply this approach to the 1850-1870 and 1900-1950 decennial censuses. We conclude that Taylor series estimation can be used effectively with the historical decennial census microdata samples and should be applied in research analyses that have the potential for substantial clustering effects.
几乎所有社会科学家使用的定量微观数据都来自包含聚类、分层和加权调整的样本(基什,1965年,1992年)。这样的数据可能会产生与来自相同规模的简单随机样本的标准误差估计值有显著差异的结果。然而,使用美国历史人口普查微观数据的研究人员通常采用为简单随机样本设计的方法。由此产生的p值和置信区间可能不准确,并可能导致错误的研究结论。由于美国人口普查微观数据样本是社会科学和政策研究中使用最广泛的数据源之一,因此可靠的标准误差估计至关重要。我们评估了综合公共使用微观数据系列(IPUMS)项目1850年至1950年的历史微观数据样本,以确定:(1)样本设计对标准误差估计的影响;(2)如何将现代标准误差估计软件应用于历史人口普查样本。我们利用1880年人口普查中一个独特的新数据源来验证我们的标准误差估计方法,然后将这种方法应用于1850 - 1870年和1900 - 1950年的十年一次人口普查。我们得出结论,泰勒级数估计可以有效地用于历史十年一次人口普查微观数据样本,并且应该应用于可能存在大量聚类效应的研究分析中。