Science Institute, University of Iceland, Reykjavík, Iceland.
Biophys Chem. 2009 Dec;145(2-3):47-56. doi: 10.1016/j.bpc.2009.08.007. Epub 2009 Sep 1.
Constraint-based modeling is an approach for quantitative prediction of net reaction flux in genome-scale biochemical networks. In vivo, the second law of thermodynamics requires that net macroscopic flux be forward, when the transformed reaction Gibbs energy is negative. We calculate the latter by using (i) group contribution estimates of metabolite species Gibbs energy, combined with (ii) experimentally measured equilibrium constants. In an application to a genome-scale stoichiometric model of Escherichia coli metabolism, iAF1260, we demonstrate that quantitative prediction of reaction directionality is increased in scope and accuracy by integration of both data sources, transformed appropriately to in vivo pH, temperature and ionic strength. Comparison of quantitative versus qualitative assignment of reaction directionality in iAF1260, assuming an accommodating reactant concentration range of 0.02-20mM, revealed that quantitative assignment leads to a low false positive, but high false negative, prediction of effectively irreversible reactions. The latter is partly due to the uncertainty associated with group contribution estimates. We also uncovered evidence that the high intracellular concentration of glutamate in E. coli may be essential to direct otherwise thermodynamically unfavorable essential reactions, such as the leucine transaminase reaction, in an anabolic direction.
基于约束的建模是一种用于定量预测基因组规模生化网络中净反应通量的方法。在体内,热力学第二定律要求当转化反应吉布斯自由能为负时,净宏观通量为正向。我们通过使用 (i) 代谢物物种吉布斯自由能的基团贡献估计,结合 (ii) 实验测量的平衡常数来计算后者。在对大肠杆菌代谢的基因组规模代谢模型 iAF1260 的应用中,我们证明了通过适当转化为体内 pH、温度和离子强度,整合这两个数据源可以提高反应方向性的定量预测的范围和准确性。在假设反应物浓度范围为 0.02-20mM 的情况下,对 iAF1260 中反应方向性的定量与定性分配进行比较表明,定量分配导致有效不可逆反应的假阳性率低,但假阴性率高。后者部分归因于基团贡献估计的不确定性。我们还发现证据表明,大肠杆菌中谷氨酸的高细胞内浓度可能对于将其他热力学不利的必需反应(如亮氨酸转氨酶反应)直接导向合成方向是必不可少的。