Suppr超能文献

对竞争风险数据的累积发病率函数进行建模。

Modeling cumulative incidence function for competing risks data.

作者信息

Zhang Mei-Jie, Zhang Xu, Scheike Thomas H

机构信息

Division of Biostatistics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, U.S.A. Tel: +1 414-456-8375;

出版信息

Expert Rev Clin Pharmacol. 2008 May 1;1(3):391-400. doi: 10.1586/17512433.1.3.391.

Abstract

A frequent occurrence in medical research is that a patient is subject to different causes of failure, where each cause is known as a competing risk. The cumulative incidence curve is a proper summary curve, showing the cumulative failure rates over time due to a particular cause. A common question in medical research is to assess the covariate effects on a cumulative incidence function. The standard approach is to construct regression models for all cause-specific hazard rate functions and then model a covariate-adjusted cumulative incidence curve as a function of all cause-specific hazards for a given set of covariates. New methods have been proposed in recent years, emphasizing direct assessment of covariate effects on cumulative incidence function. Fine and Gray proposed modeling the effects of covariates on a subdistribution hazard function. A different approach is to directly model a covariate-adjusted cumulative incidence function, including a pseudovalue approach by Andersen and Klein and a direct binomial regression by Scheike, Zhang and Gerds. In this paper, we review the standard and new regression methods for modeling a cumulative incidence function, and give the sources of computer packages/programs that implement these regression models. A real bone marrow transplant data set is analyzed to illustrate various regression methods.

摘要

在医学研究中经常出现的情况是,患者会面临不同的失败原因,每种原因都被称为竞争风险。累积发病率曲线是一种合适的汇总曲线,它显示了特定原因导致的随时间累积的失败率。医学研究中的一个常见问题是评估协变量对累积发病率函数的影响。标准方法是为所有特定原因的风险率函数构建回归模型,然后将协变量调整后的累积发病率曲线建模为给定协变量集下所有特定原因风险的函数。近年来提出了新的方法,强调直接评估协变量对累积发病率函数的影响。Fine和Gray提出对协变量对亚分布风险函数的影响进行建模。另一种不同的方法是直接对协变量调整后的累积发病率函数进行建模,包括Andersen和Klein的伪值方法以及Scheike、Zhang和Gerds的直接二项回归。在本文中,我们回顾了用于对累积发病率函数进行建模的标准回归方法和新回归方法,并给出了实现这些回归模型的计算机软件包/程序的来源。分析了一个真实的骨髓移植数据集以说明各种回归方法。

相似文献

1
3
Flexible competing risks regression modeling and goodness-of-fit.灵活的竞争风险回归建模与拟合优度
Lifetime Data Anal. 2008 Dec;14(4):464-83. doi: 10.1007/s10985-008-9094-0. Epub 2008 Aug 28.

引用本文的文献

本文引用的文献

1
SAS and R functions to compute pseudo-values for censored data regression.用于计算删失数据回归伪值的SAS和R函数。
Comput Methods Programs Biomed. 2008 Mar;89(3):289-300. doi: 10.1016/j.cmpb.2007.11.017. Epub 2008 Jan 15.
2
Modelling competing risks in cancer studies.癌症研究中的竞争风险建模。
Stat Med. 2006 Mar 30;25(6):1015-34. doi: 10.1002/sim.2246.
5
Extensions and applications of the Cox-Aalen survival model.Cox-Aalen生存模型的扩展与应用
Biometrics. 2003 Dec;59(4):1036-45. doi: 10.1111/j.0006-341x.2003.00119.x.
10
Non-parametric inference for cumulative incidence functions in competing risks studies.竞争风险研究中累积发病率函数的非参数推断。
Stat Med. 1997 Apr 30;16(8):901-10. doi: 10.1002/(sici)1097-0258(19970430)16:8<901::aid-sim543>3.0.co;2-m.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验