Qiu Si-Wei, Chow Carson C
Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA.
Phys Rev E. 2018 Dec;98(6). doi: 10.1103/physreve.98.062414. Epub 2018 Dec 27.
We study finite-size fluctuations in a network of spiking deterministic neurons coupled with nonuniform synaptic coupling. We generalize a previously developed theory of finite-size effects for globally coupled neurons with a uniform coupling function. In the uniform coupling case, mean-field theory is well defined by averaging over the network as the number of neurons in the network goes to infinity. However, for nonuniform coupling it is no longer possible to average over the entire network if we are interested in fluctuations at a particular location within the network. We show that if the coupling function approaches a continuous function in the infinite system size limit, then an average over a local neighborhood can be defined such that mean-field theory is well defined for a spatially dependent field. We then use a path-integral formalism to derive a perturbation expansion in the inverse system size around the mean-field limit for the covariance of the input to a neuron (synaptic drive) and firing rate fluctuations due to dynamical deterministic finite-size effects.
我们研究了具有非均匀突触耦合的确定性脉冲神经元网络中的有限尺寸涨落。我们推广了先前为具有均匀耦合函数的全局耦合神经元开发的有限尺寸效应理论。在均匀耦合的情况下,当网络中神经元的数量趋于无穷大时,通过对网络进行平均,平均场理论得到了很好的定义。然而,对于非均匀耦合,如果我们对网络内特定位置的涨落感兴趣,就不再能够对整个网络进行平均。我们表明,如果耦合函数在无限系统尺寸极限下趋近于一个连续函数,那么就可以定义一个局部邻域的平均,使得平均场理论对于空间相关场是明确的。然后,我们使用路径积分形式来推导围绕平均场极限的逆系统尺寸的微扰展开,以计算神经元输入(突触驱动)的协方差以及由于动态确定性有限尺寸效应引起的发放率涨落。