Suppr超能文献

从尖峰数据推断神经信息流。

Inferring neural information flow from spiking data.

作者信息

Tauste Campo Adrià

机构信息

Centre for Brain and Cognition, Universitat Pompeu Fabra, Ramon Trias Fargas 25, 08018 Barcelona, Spain.

出版信息

Comput Struct Biotechnol J. 2020 Sep 20;18:2699-2708. doi: 10.1016/j.csbj.2020.09.007. eCollection 2020.

Abstract

The brain can be regarded as an information processing system in which neurons store and propagate information about external stimuli and internal processes. Therefore, estimating interactions between neural activity at the cellular scale has significant implications in understanding how neuronal circuits encode and communicate information across brain areas to generate behavior. While the number of simultaneously recorded neurons is growing exponentially, current methods relying only on pairwise statistical dependencies still suffer from a number of conceptual and technical challenges that preclude experimental breakthroughs describing neural information flows. In this review, we examine the evolution of the field over the years, starting from descriptive statistics to model-based and model-free approaches. Then, we discuss in detail the Granger Causality framework, which includes many popular state-of-the-art methods and we highlight some of its limitations from a conceptual and practical estimation perspective. Finally, we discuss directions for future research, including the development of theoretical information flow models and the use of dimensionality reduction techniques to extract relevant interactions from large-scale recording datasets.

摘要

大脑可被视为一个信息处理系统,其中神经元存储并传播有关外部刺激和内部过程的信息。因此,在细胞尺度上估计神经活动之间的相互作用对于理解神经元回路如何编码和跨脑区传递信息以产生行为具有重要意义。虽然同时记录的神经元数量呈指数增长,但目前仅依赖成对统计依赖性的方法仍面临许多概念和技术挑战,这些挑战阻碍了描述神经信息流的实验突破。在本综述中,我们考察了该领域多年来的发展,从描述性统计到基于模型和无模型的方法。然后,我们详细讨论格兰杰因果关系框架,其中包括许多流行的前沿方法,并从概念和实际估计的角度强调其一些局限性。最后,我们讨论未来的研究方向,包括理论信息流模型的开发以及使用降维技术从大规模记录数据集中提取相关相互作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/405c/7548302/d82eb9fe058b/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验