Suppr超能文献

高曲率促进脂质膜融合:连续弹性理论的预测。

High curvature promotes fusion of lipid membranes: Predictions from continuum elastic theory.

机构信息

Institute for Theoretical Physics and BioQuant Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany.

Institute for Theoretical Physics and BioQuant Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany.

出版信息

Biophys J. 2023 May 16;122(10):1868-1882. doi: 10.1016/j.bpj.2023.04.018. Epub 2023 Apr 18.

Abstract

The fusion of lipid membranes progresses through a series of hemifusion intermediates with two significant energy barriers related to the formation of stalk and fusion pore, respectively. These energy barriers determine the speed and success rate of many critical biological processes, including the fusion of highly curved membranes, for example synaptic vesicles and enveloped viruses. Here we use continuum elastic theory of lipid monolayers to determine the relationship between membrane shape and energy barriers to fusion. We find that the stalk formation energy decreases with curvature by up to 31 kT in a 20-nm-radius vesicle compared with planar membranes and by up to 8 kT in the fusion of highly curved, long, tubular membranes. In contrast, the fusion pore formation energy barrier shows a more complicated behavior. Immediately after stalk expansion to the hemifusion diaphragm, the fusion pore formation energy barrier is low (15-25 kT) due to lipid stretching in the distal monolayers and increased tension in highly curved vesicles. Therefore, the opening of the fusion pore is faster. However, these stresses relax over time due to lipid flip-flop from the proximal monolayer, resulting in a larger hemifusion diaphragm and a higher fusion pore formation energy barrier, up to 35 kT. Therefore, if the fusion pore fails to open before significant lipid flip-flop takes place, the reaction proceeds to an extended hemifusion diaphragm state, which is a dead-end configuration in the fusion process and can be used to prevent viral infections. In contrast, in the fusion of long tubular compartments, the surface tension does not accumulate due to the formation of the diaphragm, and the energy barrier for pore expansion increases with curvature by up to 11 kT. This suggests that inhibition of polymorphic virus infection could particularly target this feature of the second barrier.

摘要

脂质膜的融合通过一系列半融合中间体进行,其中两个重要的能量障碍分别与柄部和融合孔的形成有关。这些能量障碍决定了许多关键生物过程的速度和成功率,包括高度弯曲的膜的融合,例如突触小泡和包膜病毒。在这里,我们使用脂质单层的连续弹性理论来确定膜形状与融合能量障碍之间的关系。我们发现,与平面膜相比,在 20nm 半径的囊泡中,柄部形成能随曲率降低高达 31kT,而在高度弯曲的长管状膜融合中,降低高达 8kT。相比之下,融合孔形成能障碍表现出更为复杂的行为。在柄部扩展到半融合膈膜后立即,由于远端单层中的脂质拉伸和高度弯曲的囊泡中的张力增加,融合孔形成能障碍较低(15-25kT)。因此,融合孔的打开更快。然而,随着时间的推移,这些应力会由于来自近端单层的脂质翻转而松弛,导致半融合膈膜更大,融合孔形成能障碍更高,高达 35kT。因此,如果在发生显著的脂质翻转之前融合孔未能打开,反应将进入扩展的半融合膈膜状态,这是融合过程中的死胡同状态,可用于防止病毒感染。相比之下,在长管状隔室的融合中,由于膈膜的形成,表面张力不会累积,并且孔扩展的能量障碍随曲率增加高达 11kT。这表明,抑制多态病毒感染可能特别针对该第二障碍的这一特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8ff/10209146/6074938d20c9/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验