Suppr超能文献

贝叶斯空间模型在疾病风险与多变量环境风险场关系中的应用。

Bayesian spatial modeling of disease risk in relation to multivariate environmental risk fields.

机构信息

Clinical Trials Statistical and Data Management Center, Department of Biostatistics, University of Iowa, USA.

出版信息

Stat Med. 2010 Jan 15;29(1):142-57. doi: 10.1002/sim.3777.

Abstract

The relationship between exposure to environmental chemicals during pregnancy and early childhood development is an important issue that has a spatial risk component. In this context, we have examined mental retardation and developmental delay (MRDD) outcome measures for children in a Medicaid population in South Carolina and sampled measures of soil chemistry (e.g. As, Hg, etc.) on a network of sites that are misaligned to the outcome residential addresses during pregnancy. The true chemical concentration at the residential addresses is not observed directly and must be interpolated from soil samples. In this study, we have developed a Bayesian joint model that interpolates soil chemical fields and estimates the associated MRDD risk simultaneously. Having multiple spatial fields to interpolate, we have considered a low-rank Kriging method for the interpolation that requires less computation than the Bayesian Kriging. We performed a sensitivity analysis for a bivariate smoothing, changing the number of knots and the smoothing parameter. These analyses show that a low-rank Kriging method can be used as an alternative to a full-rank Kriging, reducing the computational burden. However, the number of knots for the low-rank Kriging model needs to be selected with caution as a bivariate surface estimation can be sensitive to the choice of the number of knots.

摘要

孕期和儿童早期发育阶段接触环境化学物质与儿童智力迟钝和发育迟缓(MRDD)之间的关系是一个重要的问题,具有空间风险成分。在此背景下,我们研究了南卡罗来纳州医疗补助计划人群中儿童的智力迟钝和发育迟缓(MRDD)结果指标,并对怀孕期间与住宅地址不一致的网络站点上的土壤化学(例如 As、Hg 等)进行了采样测量。住宅地址的真实化学浓度无法直接观察到,必须从土壤样本中进行插值。在这项研究中,我们开发了一种贝叶斯联合模型,该模型可以同时插值土壤化学场并估计相关的 MRDD 风险。由于有多个空间场需要插值,因此我们考虑了一种低秩克里金法进行插值,该方法比贝叶斯克里金法需要更少的计算。我们进行了双变量平滑的敏感性分析,改变了节点数量和平滑参数。这些分析表明,低秩克里金法可以作为全秩克里金法的替代方法,从而降低计算负担。然而,低秩克里金模型的节点数量需要谨慎选择,因为双变量曲面估计对节点数量的选择很敏感。

相似文献

引用本文的文献

本文引用的文献

7
Model selection for geostatistical models.地质统计学模型的模型选择
Ecol Appl. 2006 Feb;16(1):87-98. doi: 10.1890/04-0576.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验