Suppr超能文献

病例对照研究中空间风险的低阶克里金模型的节点选择。

Knot selection for low-rank kriging models of spatial risk in case-control studies.

机构信息

Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, United States of America.

Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, United States of America.

出版信息

Spat Spatiotemporal Epidemiol. 2022 Jun;41:100483. doi: 10.1016/j.sste.2022.100483. Epub 2022 Jan 21.

Abstract

Many spatial analysis methods have been used to identify potential geographic clusters of disease in case-control studies. Low-rank kriging (LRK) models reduce the computational burden in generalized additive models by using a set of knot locations instead of the observed subject locations for estimating spatial risk. However, there is little guidance regarding selection of the number and location of the knots in case-control studies. We perform an extensive simulation study that compares a commonly-used method of knot selection in LRK models with two proposed methods and varies the number of knots. We find the commonly-used method is vastly outperformed by those that consider the locations of cases. We find that the Teitz and Bart heuristic allows the highest spatial sensitivity and power to detect zones of elevated risk, and recommend its use with a number of knots as close to the number of case locations as computation time will allow.

摘要

许多空间分析方法已被用于识别病例对照研究中疾病的潜在地理聚集。低阶克里金(LRK)模型通过使用一组结位置而不是观察到的主题位置来估计空间风险,从而减少广义加性模型的计算负担。然而,在病例对照研究中,关于结的数量和位置的选择几乎没有指导。我们进行了广泛的模拟研究,比较了 LRK 模型中结选择的常用方法与两种提出的方法,并改变了结的数量。我们发现常用方法远不如考虑病例位置的方法表现出色。我们发现 Teitz 和 Bart 启发式方法允许最高的空间灵敏度和检测风险升高区域的能力,并建议在计算时间允许的情况下,尽可能接近病例位置数量使用一定数量的结。

相似文献

本文引用的文献

2
Modeling groundwater nitrate concentrations in private wells in Iowa.模拟爱荷华州私人井中的地下水硝酸盐浓度。
Sci Total Environ. 2015 Dec 1;536:481-488. doi: 10.1016/j.scitotenv.2015.07.080. Epub 2015 Jul 30.
7
Gaussian predictive process models for large spatial data sets.用于大型空间数据集的高斯预测过程模型。
J R Stat Soc Series B Stat Methodol. 2008 Sep 1;70(4):825-848. doi: 10.1111/j.1467-9868.2008.00663.x.
8
Low-rank smoothing splines on complicated domains.复杂区域上的低秩平滑样条
Biometrics. 2007 Mar;63(1):209-17. doi: 10.1111/j.1541-0420.2006.00674.x.
9
Disease mapping and spatial regression with count data.利用计数数据进行疾病映射与空间回归。
Biostatistics. 2007 Apr;8(2):158-83. doi: 10.1093/biostatistics/kxl008. Epub 2006 Jun 29.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验