Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, United States of America.
Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, United States of America.
Spat Spatiotemporal Epidemiol. 2022 Jun;41:100483. doi: 10.1016/j.sste.2022.100483. Epub 2022 Jan 21.
Many spatial analysis methods have been used to identify potential geographic clusters of disease in case-control studies. Low-rank kriging (LRK) models reduce the computational burden in generalized additive models by using a set of knot locations instead of the observed subject locations for estimating spatial risk. However, there is little guidance regarding selection of the number and location of the knots in case-control studies. We perform an extensive simulation study that compares a commonly-used method of knot selection in LRK models with two proposed methods and varies the number of knots. We find the commonly-used method is vastly outperformed by those that consider the locations of cases. We find that the Teitz and Bart heuristic allows the highest spatial sensitivity and power to detect zones of elevated risk, and recommend its use with a number of knots as close to the number of case locations as computation time will allow.
许多空间分析方法已被用于识别病例对照研究中疾病的潜在地理聚集。低阶克里金(LRK)模型通过使用一组结位置而不是观察到的主题位置来估计空间风险,从而减少广义加性模型的计算负担。然而,在病例对照研究中,关于结的数量和位置的选择几乎没有指导。我们进行了广泛的模拟研究,比较了 LRK 模型中结选择的常用方法与两种提出的方法,并改变了结的数量。我们发现常用方法远不如考虑病例位置的方法表现出色。我们发现 Teitz 和 Bart 启发式方法允许最高的空间灵敏度和检测风险升高区域的能力,并建议在计算时间允许的情况下,尽可能接近病例位置数量使用一定数量的结。