Suppr超能文献

补充眼区在眼跳启动中的作用:执行控制,而非直接控制。

Role of supplementary eye field in saccade initiation: executive, not direct, control.

机构信息

Center for Integrative and Cognitive Neuroscience, Vanderbilt Vision Research Center, Department of Psychology, Vanderbilt University, nashville, Tennessee, USA.

出版信息

J Neurophysiol. 2010 Feb;103(2):801-16. doi: 10.1152/jn.00221.2009. Epub 2009 Nov 25.

Abstract

The goal of this study was to determine whether the activity of neurons in the supplementary eye field (SEF) is sufficient to control saccade initiation in macaque monkeys performing a saccade countermanding (stop signal) task. As previously observed, many neurons in the SEF increase the discharge rate before saccade initiation. However, when saccades are canceled in response to a stop signal, effectively no neurons with presaccadic activity display discharge rate modulation early enough to contribute to saccade cancellation. Moreover, SEF neurons do not exhibit a specific threshold discharge rate that could trigger saccade initiation. Yet, we observed more subtle relations between SEF activation and saccade production. The activity of numerous SEF neurons was correlated with response time and varied with sequential adjustments in response latency. Trials in which monkeys canceled or produced a saccade in a stop signal trial were distinguished by a modest difference in discharge rate of these SEF neurons before stop signal or target presentation. These findings indicate that neurons in the SEF, in contrast to counterparts in the frontal eye field and superior colliculus, do not contribute directly and immediately to the initiation of visually guided saccades. However the SEF may proactively regulate saccade production by biasing the balance between gaze-holding and gaze-shifting based on prior performance and anticipated task requirements.

摘要

本研究旨在确定补充眼区(SEF)中的神经元活动是否足以控制猕猴在执行扫视反转(停止信号)任务时的扫视起始。如前所述,SEF 中的许多神经元在扫视开始前增加放电率。然而,当扫视因停止信号而被取消时,实际上没有具有前扫视活动的神经元能够尽早进行放电率调制,从而有助于扫视取消。此外,SEF 神经元不表现出特定的触发扫视起始的放电率阈值。然而,我们观察到 SEF 激活与扫视产生之间存在更微妙的关系。大量 SEF 神经元的活动与反应时间相关,并随反应潜伏期的顺序调整而变化。在停止信号试验中,猴子取消或产生扫视的试验,这些 SEF 神经元在停止信号或目标呈现前的放电率略有差异。这些发现表明,SEF 中的神经元与额眼区和上丘中的对应神经元不同,它们不会直接且立即对视引导扫视的起始做出贡献。然而,SEF 可能通过基于先前的表现和预期的任务要求,主动调整注视保持和注视转移之间的平衡,从而积极调节扫视产生。

相似文献

1
Role of supplementary eye field in saccade initiation: executive, not direct, control.
J Neurophysiol. 2010 Feb;103(2):801-16. doi: 10.1152/jn.00221.2009. Epub 2009 Nov 25.
4
Supplementary eye field encodes option and action value for saccades with variable reward.
J Neurophysiol. 2010 Nov;104(5):2634-53. doi: 10.1152/jn.00430.2010. Epub 2010 Aug 25.
6
Performance monitoring local field potentials in the medial frontal cortex of primates: supplementary eye field.
J Neurophysiol. 2010 Sep;104(3):1523-37. doi: 10.1152/jn.01001.2009. Epub 2010 Jul 21.
7
Relation of frontal eye field activity to saccade initiation during a countermanding task.
Exp Brain Res. 2008 Sep;190(2):135-51. doi: 10.1007/s00221-008-1455-0. Epub 2008 Jul 5.
10
Functional distinction between visuomovement and movement neurons in macaque frontal eye field during saccade countermanding.
J Neurophysiol. 2009 Dec;102(6):3091-100. doi: 10.1152/jn.00270.2009. Epub 2009 Sep 23.

引用本文的文献

1
Neural basis of self-control.
bioRxiv. 2025 Aug 2:2024.02.07.578652. doi: 10.1101/2024.02.07.578652.
2
Disrupted microsaccade responses in late-life depression.
Sci Rep. 2025 Jan 22;15(1):2827. doi: 10.1038/s41598-025-86399-9.
3
Involvement of the anterior insula and frontal operculum during wh-question comprehension of wh-in-situ Korean language.
PLoS One. 2024 Apr 26;19(4):e0298740. doi: 10.1371/journal.pone.0298740. eCollection 2024.
4
Neuronal activity in posterior parietal cortex area LIP is not sufficient for saccadic eye movement production.
Front Integr Neurosci. 2023 Nov 24;17:1251431. doi: 10.3389/fnint.2023.1251431. eCollection 2023.
5
Neural mechanisms for executive control of speed-accuracy trade-off.
Cell Rep. 2023 Nov 28;42(11):113422. doi: 10.1016/j.celrep.2023.113422. Epub 2023 Nov 10.
6
Cortical origin of theta error signals.
Cereb Cortex. 2023 Nov 27;33(23):11300-11319. doi: 10.1093/cercor/bhad367.
7
Integration of landmark and saccade target signals in macaque frontal cortex visual responses.
Commun Biol. 2023 Sep 13;6(1):938. doi: 10.1038/s42003-023-05291-2.
8
In vivo ephaptic coupling allows memory network formation.
Cereb Cortex. 2023 Aug 23;33(17):9877-9895. doi: 10.1093/cercor/bhad251.
9
Functional architecture of executive control and associated event-related potentials in macaques.
Nat Commun. 2022 Oct 21;13(1):6270. doi: 10.1038/s41467-022-33942-1.
10
Covariations between pupil diameter and supplementary eye field activity suggest a role in cognitive effort implementation.
PLoS Biol. 2022 May 26;20(5):e3001654. doi: 10.1371/journal.pbio.3001654. eCollection 2022 May.

本文引用的文献

2
Functional distinction between visuomovement and movement neurons in macaque frontal eye field during saccade countermanding.
J Neurophysiol. 2009 Dec;102(6):3091-100. doi: 10.1152/jn.00270.2009. Epub 2009 Sep 23.
3
Proactive inhibitory control and attractor dynamics in countermanding action: a spiking neural circuit model.
J Neurosci. 2009 Jul 15;29(28):9059-71. doi: 10.1523/JNEUROSCI.6164-08.2009.
4
Proactive adjustments of response strategies in the stop-signal paradigm.
J Exp Psychol Hum Percept Perform. 2009 Jun;35(3):835-54. doi: 10.1037/a0012726.
6
Supplementary eye field as defined by intracortical microstimulation: connections in macaques.
J Comp Neurol. 1990 Mar 8;293(2):299-330. doi: 10.1002/cne.902930211.
7
Monkey supplementary eye field neurons signal the ordinal position of both actions and objects.
J Neurosci. 2009 Jan 21;29(3):591-9. doi: 10.1523/JNEUROSCI.4803-08.2009.
8
Relation of frontal eye field activity to saccade initiation during a countermanding task.
Exp Brain Res. 2008 Sep;190(2):135-51. doi: 10.1007/s00221-008-1455-0. Epub 2008 Jul 5.
9
Proactive inhibitory control of movement assessed by event-related fMRI.
Neuroimage. 2008 Sep 1;42(3):1196-206. doi: 10.1016/j.neuroimage.2008.05.041. Epub 2008 Jul 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验