Suppr超能文献

监测灵长类动物内侧前额皮质的局部场电位:补充眼区。

Performance monitoring local field potentials in the medial frontal cortex of primates: supplementary eye field.

机构信息

Department of Psychology, Vanderbilt Vision Research Center, Center for Integrative and Cognitive Neuroscience, Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240-7817, USA.

出版信息

J Neurophysiol. 2010 Sep;104(3):1523-37. doi: 10.1152/jn.01001.2009. Epub 2010 Jul 21.

Abstract

We describe intracranial local field potentials (LFPs) recorded in the supplementary eye field (SEF) of macaque monkeys performing a saccade countermanding task. The most prominent feature at 90% of the sites was a negative-going polarization evoked by a contralateral visual target. At roughly 50% of sites a negative-going polarization was observed preceding saccades, but in stop signal trials this polarization was not modulated in a manner sufficient to control saccade initiation. When saccades were canceled in stop signal trials, LFP modulation increased with the inferred magnitude of response conflict derived from the coactivation of gaze-shifting and gaze-holding neurons. At 30% of sites, a pronounced negative-going polarization occurred after errors. This negative polarity did not appear in unrewarded correct trials. Variations of response time with trial history were not related to any features of the LFP. The results provide new evidence that error-related and conflict-related but not feedback-related signals are conveyed by the LFP in the macaque SEF and are important for identifying the generator of the error-related negativity.

摘要

我们描述了在执行扫视抑制任务的猕猴的补充眼区(SEF)中记录的颅内局部场电位(LFPs)。在 90%的位点上,最显著的特征是由对侧视觉目标诱发的负向极化。在大约 50%的位点上,在扫视前观察到负向极化,但在停止信号试验中,这种极化的调制不足以控制扫视的开始。当扫视在停止信号试验中被取消时,LFPs 的调制会随着来自注视转移和注视保持神经元的共同激活的推断的反应冲突程度而增加。在 30%的位点上,在错误后出现明显的负向极化。这种负极性不会出现在无奖励的正确试验中。反应时间随试验历史的变化与 LFPs 的任何特征都没有关系。结果提供了新的证据,表明与错误相关和与冲突相关但与反馈无关的信号是由猴 SEF 中的 LFPs 传递的,这对于识别错误相关负性的发生器很重要。

相似文献

1
Performance monitoring local field potentials in the medial frontal cortex of primates: supplementary eye field.
J Neurophysiol. 2010 Sep;104(3):1523-37. doi: 10.1152/jn.01001.2009. Epub 2010 Jul 21.
2
Performance monitoring local field potentials in the medial frontal cortex of primates: anterior cingulate cortex.
J Neurophysiol. 2008 Feb;99(2):759-72. doi: 10.1152/jn.00896.2006. Epub 2007 Dec 12.
3
Executive control of countermanding saccades by the supplementary eye field.
Nat Neurosci. 2006 Jul;9(7):925-31. doi: 10.1038/nn1714. Epub 2006 May 28.
4
Role of supplementary eye field in saccade initiation: executive, not direct, control.
J Neurophysiol. 2010 Feb;103(2):801-16. doi: 10.1152/jn.00221.2009. Epub 2009 Nov 25.
5
Executive control of gaze by the frontal lobes.
Cogn Affect Behav Neurosci. 2007 Dec;7(4):396-412. doi: 10.3758/cabn.7.4.396.
7
Relation of frontal eye field activity to saccade initiation during a countermanding task.
Exp Brain Res. 2008 Sep;190(2):135-51. doi: 10.1007/s00221-008-1455-0. Epub 2008 Jul 5.
8
Role of frontal eye fields in countermanding saccades: visual, movement, and fixation activity.
J Neurophysiol. 1998 Feb;79(2):817-34. doi: 10.1152/jn.1998.79.2.817.
9
Frontal eye field contributions to rapid corrective saccades.
J Neurophysiol. 2007 Feb;97(2):1457-69. doi: 10.1152/jn.00433.2006. Epub 2006 Nov 29.
10
Functional distinction between visuomovement and movement neurons in macaque frontal eye field during saccade countermanding.
J Neurophysiol. 2009 Dec;102(6):3091-100. doi: 10.1152/jn.00270.2009. Epub 2009 Sep 23.

引用本文的文献

1
Cognitive Control.
Annu Rev Psychol. 2025 Jan;76(1):167-195. doi: 10.1146/annurev-psych-022024-103901. Epub 2024 Dec 3.
2
Agranular frontal cortical microcircuit underlying cognitive control in macaques.
Front Neural Circuits. 2024 Mar 27;18:1389110. doi: 10.3389/fncir.2024.1389110. eCollection 2024.
3
Neural mechanisms for executive control of speed-accuracy trade-off.
Cell Rep. 2023 Nov 28;42(11):113422. doi: 10.1016/j.celrep.2023.113422. Epub 2023 Nov 10.
4
Cortical origin of theta error signals.
Cereb Cortex. 2023 Nov 27;33(23):11300-11319. doi: 10.1093/cercor/bhad367.
5
Neurophysiological mechanisms of error monitoring in human and non-human primates.
Nat Rev Neurosci. 2023 Mar;24(3):153-172. doi: 10.1038/s41583-022-00670-w. Epub 2023 Jan 27.
6
On the Comparison Between the Nc/CRN and the Ne/ERN.
Front Hum Neurosci. 2022 Jun 23;15:788167. doi: 10.3389/fnhum.2021.788167. eCollection 2021.
7
Live agent preference and social action monitoring in the macaque mid-superior temporal sulcus region.
Proc Natl Acad Sci U S A. 2021 Nov 2;118(44). doi: 10.1073/pnas.2109653118.
8
Segregated Co-activation Patterns in the Emergence of Decision Confidence During Visual Perception.
Front Syst Neurosci. 2020 Nov 10;14:557693. doi: 10.3389/fnsys.2020.557693. eCollection 2020.
9
Medial frontal negativities predict performance improvements during motor sequence but not motor adaptation learning.
Psychophysiology. 2021 Jan;58(1):e13708. doi: 10.1111/psyp.13708. Epub 2020 Oct 27.
10
Dissociation of Medial Frontal β-Bursts and Executive Control.
J Neurosci. 2020 Nov 25;40(48):9272-9282. doi: 10.1523/JNEUROSCI.2072-20.2020. Epub 2020 Oct 23.

本文引用的文献

2
Eye movement artifact may account for putative frontal feedback-related potentials in nonhuman primates.
J Neurosci. 2010 Mar 24;30(12):4187-9. doi: 10.1523/JNEUROSCI.0449-10.2010.
3
Optimal performance in a countermanding saccade task.
Brain Res. 2010 Mar 8;1318:178-87. doi: 10.1016/j.brainres.2009.12.018. Epub 2009 Dec 23.
4
Frontal feedback-related potentials in nonhuman primates: modulation during learning and under haloperidol.
J Neurosci. 2009 Dec 16;29(50):15675-83. doi: 10.1523/JNEUROSCI.4943-09.2009.
5
Role of supplementary eye field in saccade initiation: executive, not direct, control.
J Neurophysiol. 2010 Feb;103(2):801-16. doi: 10.1152/jn.00221.2009. Epub 2009 Nov 25.
6
Functional distinction between visuomovement and movement neurons in macaque frontal eye field during saccade countermanding.
J Neurophysiol. 2009 Dec;102(6):3091-100. doi: 10.1152/jn.00270.2009. Epub 2009 Sep 23.
7
On the origin of event-related potentials indexing covert attentional selection during visual search.
J Neurophysiol. 2009 Oct;102(4):2375-86. doi: 10.1152/jn.00680.2009. Epub 2009 Aug 12.
8
Proactive inhibitory control and attractor dynamics in countermanding action: a spiking neural circuit model.
J Neurosci. 2009 Jul 15;29(28):9059-71. doi: 10.1523/JNEUROSCI.6164-08.2009.
9
Short-latency influence of medial frontal cortex on primary motor cortex during action selection under conflict.
J Neurosci. 2009 May 27;29(21):6926-31. doi: 10.1523/JNEUROSCI.1396-09.2009.
10
Segregated and integrated coding of reward and punishment in the cingulate cortex.
J Neurophysiol. 2009 Jun;101(6):3284-93. doi: 10.1152/jn.90909.2008. Epub 2009 Apr 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验