Suppr超能文献

应对营养可用性,新月柄杆菌中基因表达和细胞分化的全局调控。

Global regulation of gene expression and cell differentiation in Caulobacter crescentus in response to nutrient availability.

机构信息

Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California, 405 Hilgard Ave., Los Angeles, CA 90095-1569, USA.

出版信息

J Bacteriol. 2010 Feb;192(3):819-33. doi: 10.1128/JB.01240-09. Epub 2009 Nov 30.

Abstract

In a developmental strategy designed to efficiently exploit and colonize sparse oligotrophic environments, Caulobacter crescentus cells divide asymmetrically, yielding a motile swarmer cell and a sessile stalked cell. After a relatively fixed time period under typical culture conditions, the swarmer cell differentiates into a replicative stalked cell. Since differentiation into the stalked cell type is irreversible, it is likely that environmental factors such as the availability of essential nutrients would influence the timing of the decision to abandon motility and adopt a sessile lifestyle. We measured two different parameters in nutrient-limited chemostat cultures, biomass concentration and the ratio of nonstalked to stalked cells, over a range of flow rates and found that nitrogen limitation significantly extended the swarmer cell life span. The transcriptional profiling experiments described here generate the first comprehensive picture of the global regulatory strategies used by an oligotroph when confronted with an environment where key macronutrients are sparse. The pattern of regulated gene expression in nitrogen- and carbon-limited cells shares some features in common with most copiotrophic organisms, but critical differences suggest that Caulobacter, and perhaps other oligotrophs, have evolved regulatory strategies to deal distinctly with their natural environments. We hypothesize that nitrogen limitation extends the swarmer cell lifetime by delaying the onset of a sequence of differentiation events, which when initiated by the correct combination of external environmental cues, sets the swarmer cell on a path to differentiate into a stalked cell within a fixed time period.

摘要

在一项旨在高效利用和殖民贫瘠寡营养环境的发展策略中,新月柄杆菌细胞不对称分裂,产生一个游动的泳动细胞和一个固着的柄细胞。在典型培养条件下经过相对固定的时间后,泳动细胞分化为复制的柄细胞。由于分化为柄细胞类型是不可逆的,因此环境因素(如必需营养物质的可用性)可能会影响放弃运动和采用固着生活方式的决策时机。我们在营养限制的恒化器培养物中测量了两个不同的参数,即在一系列流速下的生物量浓度和非柄细胞与柄细胞的比例,并发现氮限制显著延长了泳动细胞的寿命。这里描述的转录谱实验生成了一个寡营养生物在关键宏量营养素稀缺的环境中所使用的全局调控策略的第一个全面图像。氮和碳限制细胞中受调控基因表达的模式与大多数富营养生物有一些共同特征,但关键差异表明,新月柄杆菌,也许还有其他寡营养生物,已经进化出了调控策略来应对其自然环境。我们假设氮限制通过延迟一系列分化事件的开始来延长泳动细胞的寿命,这些事件一旦被正确组合的外部环境线索触发,就会使泳动细胞在固定时间内分化为柄细胞。

相似文献

2
Effects of (p)ppGpp on the progression of the cell cycle of Caulobacter crescentus.
J Bacteriol. 2014 Jul;196(14):2514-25. doi: 10.1128/JB.01575-14. Epub 2014 May 2.
3
SpoT regulates DnaA stability and initiation of DNA replication in carbon-starved Caulobacter crescentus.
J Bacteriol. 2008 Oct;190(20):6867-80. doi: 10.1128/JB.00700-08. Epub 2008 Aug 22.
4
Development of surface adhesion in Caulobacter crescentus.
J Bacteriol. 2004 Mar;186(5):1438-47. doi: 10.1128/JB.186.5.1438-1447.2004.
5
Phosphate starvation decouples cell differentiation from DNA replication control in the dimorphic bacterium Caulobacter crescentus.
PLoS Genet. 2023 Nov 27;19(11):e1010882. doi: 10.1371/journal.pgen.1010882. eCollection 2023 Nov.
6
ppGpp and polyphosphate modulate cell cycle progression in Caulobacter crescentus.
J Bacteriol. 2012 Jan;194(1):28-35. doi: 10.1128/JB.05932-11. Epub 2011 Oct 21.
7
Signal transduction mechanisms in Caulobacter crescentus development and cell cycle control.
FEMS Microbiol Rev. 2000 Apr;24(2):177-91. doi: 10.1016/S0168-6445(99)00035-2.
8
Dynamics and control of biofilms of the oligotrophic bacterium Caulobacter crescentus.
J Bacteriol. 2004 Dec;186(24):8254-66. doi: 10.1128/JB.186.24.8254-8266.2004.
9
Regulation of cellular differentiation in Caulobacter crescentus.
Microbiol Rev. 1995 Mar;59(1):31-47. doi: 10.1128/mr.59.1.31-47.1995.
10
Regulatory response to carbon starvation in Caulobacter crescentus.
PLoS One. 2011 Apr 11;6(4):e18179. doi: 10.1371/journal.pone.0018179.

引用本文的文献

1
Disrupting NtrC function reveals unexpected robustness in a central cell cycle regulatory network.
mBio. 2025 Sep 10;16(9):e0196225. doi: 10.1128/mbio.01962-25. Epub 2025 Aug 18.
2
Metabolomic analysis of murine tissues infected with Brucella melitensis.
PLoS One. 2025 Jan 27;20(1):e0314672. doi: 10.1371/journal.pone.0314672. eCollection 2025.
3
Coupling of cell growth modulation to asymmetric division and cell cycle regulation in .
Proc Natl Acad Sci U S A. 2024 Oct 8;121(41):e2406397121. doi: 10.1073/pnas.2406397121. Epub 2024 Oct 3.
4
Regulation of the transcription factor CdnL promotes adaptation to nutrient stress in .
PNAS Nexus. 2024 Apr 10;3(4):pgae154. doi: 10.1093/pnasnexus/pgae154. eCollection 2024 Apr.
5
Regulation of the transcription factor CdnL promotes adaptation to nutrient stress in .
bioRxiv. 2023 Dec 21:2023.12.20.572625. doi: 10.1101/2023.12.20.572625.
6
Phosphate starvation decouples cell differentiation from DNA replication control in the dimorphic bacterium Caulobacter crescentus.
PLoS Genet. 2023 Nov 27;19(11):e1010882. doi: 10.1371/journal.pgen.1010882. eCollection 2023 Nov.
8
Cold Regulation of Genes Encoding Ion Transport Systems in the Oligotrophic Bacterium Caulobacter crescentus.
Microbiol Spectr. 2021 Sep 3;9(1):e0071021. doi: 10.1128/Spectrum.00710-21. Epub 2021 Aug 25.
9
MyD88-Dependent Glucose Restriction and Itaconate Production Control Brucella Infection.
Infect Immun. 2021 Sep 16;89(10):e0015621. doi: 10.1128/IAI.00156-21. Epub 2021 Jun 14.

本文引用的文献

1
SpoT regulates DnaA stability and initiation of DNA replication in carbon-starved Caulobacter crescentus.
J Bacteriol. 2008 Oct;190(20):6867-80. doi: 10.1128/JB.00700-08. Epub 2008 Aug 22.
2
Architecture and inherent robustness of a bacterial cell-cycle control system.
Proc Natl Acad Sci U S A. 2008 Aug 12;105(32):11340-5. doi: 10.1073/pnas.0805258105. Epub 2008 Aug 6.
4
TonB-dependent maltose transport by Caulobacter crescentus.
Microbiology (Reading). 2008 Jun;154(Pt 6):1748-1754. doi: 10.1099/mic.0.2008/017350-0.
6
The global, ppGpp-mediated stringent response to amino acid starvation in Escherichia coli.
Mol Microbiol. 2008 Jun;68(5):1128-48. doi: 10.1111/j.1365-2958.2008.06229.x. Epub 2008 Apr 22.
7
Control of bacterial transcription, translation and replication by (p)ppGpp.
Curr Opin Microbiol. 2008 Apr;11(2):100-5. doi: 10.1016/j.mib.2008.02.001. Epub 2008 Mar 24.
8
Systems biology of Caulobacter.
Annu Rev Genet. 2007;41:429-41. doi: 10.1146/annurev.genet.41.110306.130346.
9
Nitrogen regulation in bacteria and archaea.
Annu Rev Microbiol. 2007;61:349-77. doi: 10.1146/annurev.micro.61.080706.093409.
10
Regulation of the bacterial cell cycle by an integrated genetic circuit.
Nature. 2006 Dec 14;444(7121):899-904. doi: 10.1038/nature05321. Epub 2006 Nov 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验