Suppr超能文献

用于脑电图信号分类的具有通用学习的正则化公共空间模式

Regularized common spatial patterns with generic learning for EEG signal classification.

作者信息

Lu Haiping, Plataniotis Konstantinos N, Venetsanopoulos Anastasios N

机构信息

Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S3G4, Canada.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:6599-602. doi: 10.1109/IEMBS.2009.5332554.

Abstract

The common spatial patterns (CSP) algorithm is commonly used to extract discriminative spatial filters for the classification of electroencephalogram (EEG) signals in the context of brain-computer interfaces (BCIs). However, CSP is based on a sample-based covariance matrix estimation. Therefore, its performance is limited when the number of available training samples is small. In this paper, the CSP method is considered in such a small-sample setting. We propose a regularized common spatial patterns (R-CSP) algorithm by incorporating the principle of generic learning. The covariance matrix estimation in R-CSP is regularized through two regularization parameters to increase the estimation stability while reducing the estimation bias due to limited number of training samples. The proposed method is tested on data set IVa of the third BCI competition and the results show that R-CSP can outperform the classical CSP algorithm by 8.5% on average. Moreover, the regularization introduced is particularly effective in the small-sample setting.

摘要

通用空间模式(CSP)算法常用于在脑机接口(BCI)的背景下提取用于脑电图(EEG)信号分类的判别性空间滤波器。然而,CSP基于基于样本的协方差矩阵估计。因此,当可用训练样本数量较少时,其性能会受到限制。在本文中,考虑了在这种小样本情况下的CSP方法。我们通过纳入泛化学习原理提出了一种正则化通用空间模式(R-CSP)算法。R-CSP中的协方差矩阵估计通过两个正则化参数进行正则化,以提高估计稳定性,同时减少由于训练样本数量有限导致的估计偏差。所提出的方法在第三届BCI竞赛的数据集IVa上进行了测试,结果表明R-CSP平均比经典CSP算法性能高出8.5%。此外,引入的正则化在小样本情况下特别有效。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验