Suppr超能文献

神经群体动力学的非平稳建模

Nonstationary modeling of neural population dynamics.

作者信息

Chan Rosa H M, Song Dong, Berger Theodore W

机构信息

Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089 USA.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:4559-62. doi: 10.1109/IEMBS.2009.5332701.

Abstract

A stochastic state point-process adaptive filter was used to track the temporal evolution of several simulated nonlinear dynamical systems. The estimated Laguerre coefficients and Laguerre poles were used to reconstruct the feedforward and feedback kernels in the system. Simulations showed that the proposed method could track the actual underlying changes of nonlinear kernels using spike input and spike output information alone. The estimated models also converge quickly to the actual models after abrupt step changes in kernels. The proposed method can be used to track the functional input-output properties of neural systems as a result of learning, changes in context, aging or other factors in the natural flow of behavioral events.

摘要

使用随机状态点过程自适应滤波器来跟踪几个模拟非线性动力系统的时间演变。估计的拉盖尔系数和拉盖尔极点用于重建系统中的前馈和反馈核。模拟表明,所提出的方法仅使用尖峰输入和尖峰输出信息就可以跟踪非线性核的实际潜在变化。在核发生突然的阶跃变化后,估计模型也能迅速收敛到实际模型。由于学习、情境变化、衰老或行为事件自然流程中的其他因素,所提出的方法可用于跟踪神经系统的功能输入-输出特性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验