Suppr超能文献

在光谱域中提取颜色特征以识别组织病理学中的中心母细胞。

Extraction of color features in the spectral domain to recognize centroblasts in histopathology.

作者信息

Belkacem-Boussaid Kamel, Sertel Olcay, Lozanski Gerard, Shana'aah Arwa, Gurcan Metin

机构信息

Department of Biomedical Informatics, The Ohio State University, Columbus, 43210, USA.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:3685-8. doi: 10.1109/IEMBS.2009.5334727.

Abstract

In this paper, we are proposing a novel automated method to recognize centroblast (CB) cells from non-centroblast (non-CB) cells for computer-assisted evaluation of follicular lymphoma tissue samples. The method is based on training and testing of a quadratic discriminant analysis (QDA) classifier. The novel aspects of this method are the identification of the CB object with prior information, and the introduction of the principal component analysis (PCA) in the spectral domain to extract color texture features. Both geometric and texture features are used to achieve the classification. Experimental results on real follicular lymphoma images demonstrate that the combined feature space improved the performance of the system significantly. The implemented method can identify centroblast cells (CB) from non-centroblast cells (non-CB) with a classification accuracy of 82.56%.

摘要

在本文中,我们提出了一种新颖的自动化方法,用于从非中心母细胞(non-CB)中识别中心母细胞(CB),以对滤泡性淋巴瘤组织样本进行计算机辅助评估。该方法基于二次判别分析(QDA)分类器的训练和测试。此方法的新颖之处在于利用先验信息识别CB对象,并在光谱域引入主成分分析(PCA)以提取颜色纹理特征。同时使用几何特征和纹理特征来实现分类。对真实滤泡性淋巴瘤图像的实验结果表明,组合特征空间显著提高了系统性能。所实现的方法能够从非中心母细胞中识别中心母细胞,分类准确率为82.56%。

相似文献

10
The broad landscape of follicular lymphoma: Part II.滤泡性淋巴瘤的广阔领域:第二部分。
Pathologica. 2020 Jun;112(2):79-92. doi: 10.32074/1591-951X-6-20. Epub 2020 Mar 12.

引用本文的文献

8
Automatic detection of follicular regions in H&E images using iterative shape index.使用迭代形状指数自动检测 H&E 图像中的滤泡区域。
Comput Med Imaging Graph. 2011 Oct-Dec;35(7-8):592-602. doi: 10.1016/j.compmedimag.2011.03.001. Epub 2011 Apr 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验