Belkacem-Boussaid Kamel, Sertel Olcay, Lozanski Gerard, Shana'aah Arwa, Gurcan Metin
Department of Biomedical Informatics, The Ohio State University, Columbus, 43210, USA.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:3685-8. doi: 10.1109/IEMBS.2009.5334727.
In this paper, we are proposing a novel automated method to recognize centroblast (CB) cells from non-centroblast (non-CB) cells for computer-assisted evaluation of follicular lymphoma tissue samples. The method is based on training and testing of a quadratic discriminant analysis (QDA) classifier. The novel aspects of this method are the identification of the CB object with prior information, and the introduction of the principal component analysis (PCA) in the spectral domain to extract color texture features. Both geometric and texture features are used to achieve the classification. Experimental results on real follicular lymphoma images demonstrate that the combined feature space improved the performance of the system significantly. The implemented method can identify centroblast cells (CB) from non-centroblast cells (non-CB) with a classification accuracy of 82.56%.
在本文中,我们提出了一种新颖的自动化方法,用于从非中心母细胞(non-CB)中识别中心母细胞(CB),以对滤泡性淋巴瘤组织样本进行计算机辅助评估。该方法基于二次判别分析(QDA)分类器的训练和测试。此方法的新颖之处在于利用先验信息识别CB对象,并在光谱域引入主成分分析(PCA)以提取颜色纹理特征。同时使用几何特征和纹理特征来实现分类。对真实滤泡性淋巴瘤图像的实验结果表明,组合特征空间显著提高了系统性能。所实现的方法能够从非中心母细胞中识别中心母细胞,分类准确率为82.56%。