Suppr超能文献

基于自适应似然的细胞分割的滤泡性淋巴瘤分级中中心母细胞的计算机辅助检测。

Computer-aided detection of centroblasts for follicular lymphoma grading using adaptive likelihood-based cell segmentation.

机构信息

Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA.

出版信息

IEEE Trans Biomed Eng. 2010 Oct;57(10):2613-6. doi: 10.1109/TBME.2010.2055058. Epub 2010 Jun 28.

Abstract

Follicular lymphoma (FL) is one of the most common lymphoid malignancies in the western world. FL has a variable clinical course, and important clinical treatment decisions for FL patients are based on histological grading, which is done by manually counting the large malignant cells called centroblasts (CB) in ten standard microscopic high-power fields from H&E-stained tissue sections. This method is tedious and subjective; as a result, suffers from considerable inter and intrareader variability even when used by expert pathologists. In this paper, we present a computer-aided detection system for automated identification of CB cells from H&E-stained FL tissue samples. The proposed system uses a unitone conversion to obtain a single-channel image that has the highest contrast. From the resulting image, which has a bimodal distribution due to the H&E stain, a cell-likelihood image is generated. Finally, a two-step CB detection procedure is applied. In the first step, we identify evident nonCB cells based on size and shape. In the second step, the CB detection is further refined by learning and utilizing the texture distribution of nonCB cells. We evaluated the proposed approach on 100 region-of-interest images extracted from ten distinct tissue samples and obtained a promising 80.7% detection accuracy.

摘要

滤泡性淋巴瘤(FL)是西方世界最常见的淋巴恶性肿瘤之一。FL 的临床病程具有多变性,对 FL 患者的重要临床治疗决策是基于组织学分级做出的,该分级通过手动计数 H&E 染色组织切片中十个标准高倍镜视野中的大型恶性细胞,即中心母细胞(CB)来完成。这种方法繁琐且具有主观性;因此,即使由专家病理学家使用,也会存在相当大的观察者内和观察者间变异性。在本文中,我们提出了一种用于从 H&E 染色的 FL 组织样本中自动识别 CB 细胞的计算机辅助检测系统。所提出的系统使用单色调转换来获得对比度最高的单通道图像。从由于 H&E 染色而具有双峰分布的所得图像中,生成细胞似然图像。最后,应用两步 CB 检测程序。在第一步中,我们根据大小和形状识别明显的非 CB 细胞。在第二步中,通过学习和利用非 CB 细胞的纹理分布,进一步细化 CB 检测。我们在 10 个不同组织样本中提取的 100 个感兴趣区域图像上评估了所提出的方法,获得了有希望的 80.7%的检测准确率。

相似文献

5
A general framework for the segmentation of follicular lymphoma virtual slides.滤泡性淋巴瘤虚拟切片分割的通用框架。
Comput Med Imaging Graph. 2012 Sep;36(6):442-51. doi: 10.1016/j.compmedimag.2012.05.003. Epub 2012 Jun 18.
9
Automatic detection of follicular regions in H&E images using iterative shape index.使用迭代形状指数自动检测 H&E 图像中的滤泡区域。
Comput Med Imaging Graph. 2011 Oct-Dec;35(7-8):592-602. doi: 10.1016/j.compmedimag.2011.03.001. Epub 2011 Apr 20.

引用本文的文献

4
Digital pathology and artificial intelligence.数字病理学与人工智能。
Lancet Oncol. 2019 May;20(5):e253-e261. doi: 10.1016/S1470-2045(19)30154-8.

本文引用的文献

3
Histopathological image analysis: a review.组织病理学图像分析:综述。
IEEE Rev Biomed Eng. 2009;2:147-71. doi: 10.1109/RBME.2009.2034865. Epub 2009 Oct 30.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验