Suppr超能文献

通过降维方法对中心母细胞进行组织病理学图像分析分类。

Histopathological image analysis for centroblasts classification through dimensionality reduction approaches.

机构信息

Informatics and Telematics Institute-Centre for Research and Technology Hellas (ITI-CERTH), Thessaloniki, Greece.

出版信息

Cytometry A. 2014 Mar;85(3):242-55. doi: 10.1002/cyto.a.22432. Epub 2013 Dec 26.

Abstract

We present two novel automated image analysis methods to differentiate centroblast (CB) cells from noncentroblast (non-CB) cells in digital images of H&E-stained tissues of follicular lymphoma. CB cells are often confused by similar looking cells within the tissue, therefore a system to help their classification is necessary. Our methods extract the discriminatory features of cells by approximating the intrinsic dimensionality from the subspace spanned by CB and non-CB cells. In the first method, discriminatory features are approximated with the help of singular value decomposition (SVD), whereas in the second method they are extracted using Laplacian Eigenmaps. Five hundred high-power field images were extracted from 17 slides, which are then used to compose a database of 213 CB and 234 non-CB region of interest images. The recall, precision, and overall accuracy rates of the developed methods were measured and compared with existing classification methods. Moreover, the reproducibility of both classification methods was also examined. The average values of the overall accuracy were 99.22% ± 0.75% and 99.07% ± 1.53% for COB and CLEM, respectively. The experimental results demonstrate that both proposed methods provide better classification accuracy of CB/non-CB in comparison with the state of the art methods.

摘要

我们提出了两种新的自动化图像分析方法,以区分滤泡性淋巴瘤 H&E 染色组织数字图像中的中心母细胞(CB)和非中心母细胞(non-CB)。CB 细胞在组织内常与类似外观的细胞混淆,因此需要一个系统来帮助它们分类。我们的方法通过逼近 CB 和 non-CB 细胞所在子空间的内在维度来提取细胞的判别特征。在第一种方法中,使用奇异值分解(SVD)来逼近判别特征,而在第二种方法中,使用拉普拉斯特征映射来提取判别特征。从 17 张幻灯片中提取了 500 个高倍视野图像,然后将其用于组成包含 213 个 CB 和 234 个非 CB 感兴趣区域图像的数据库。测量并比较了开发的方法与现有分类方法的召回率、精度和总体准确率。此外,还检查了两种分类方法的可重复性。COB 和 CLEM 的总体准确率平均值分别为 99.22%±0.75%和 99.07%±1.53%。实验结果表明,与现有方法相比,这两种方法都能提供更好的 CB/non-CB 分类准确率。

相似文献

1
Histopathological image analysis for centroblasts classification through dimensionality reduction approaches.
Cytometry A. 2014 Mar;85(3):242-55. doi: 10.1002/cyto.a.22432. Epub 2013 Dec 26.
2
Extraction of color features in the spectral domain to recognize centroblasts in histopathology.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:3685-8. doi: 10.1109/IEMBS.2009.5334727.
3
Partitioning histopathological images: an integrated framework for supervised color-texture segmentation and cell splitting.
IEEE Trans Med Imaging. 2011 Sep;30(9):1661-77. doi: 10.1109/TMI.2011.2141674. Epub 2011 Apr 11.
4
Classification of follicular lymphoma images: a holistic approach with symbol-based machine learning methods.
Wien Klin Wochenschr. 2011 Dec;123(23-24):700-9. doi: 10.1007/s00508-011-0091-z. Epub 2011 Dec 5.
5
Incremental linear discriminant analysis for face recognition.
IEEE Trans Syst Man Cybern B Cybern. 2008 Feb;38(1):210-21. doi: 10.1109/TSMCB.2007.908870.
7
Morphological and textural analysis of centroblasts in low-thickness sliced tissue biopsies of follicular lymphoma.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:3374-7. doi: 10.1109/EMBC.2014.6944346.
8
Comments on “SVD-based modeling for image texture classification using wavelet transform”.
IEEE Trans Image Process. 2013 Dec;22(12):5408. doi: 10.1109/TIP.2013.2279319.
9
General tensor discriminant analysis and gabor features for gait recognition.
IEEE Trans Pattern Anal Mach Intell. 2007 Oct;29(10):1700-15. doi: 10.1109/TPAMI.2007.1096.

引用本文的文献

1
Artificial Intelligence in Lymphoma Histopathology: Systematic Review.
J Med Internet Res. 2025 Feb 14;27:e62851. doi: 10.2196/62851.
2
Detection of centroblast cells in H&E stained whole slide image based on object detection.
Front Med (Lausanne). 2024 Feb 7;11:1303982. doi: 10.3389/fmed.2024.1303982. eCollection 2024.
3
A polygenic stacking classifier revealed the complicated platelet transcriptomic landscape of adult immune thrombocytopenia.
Mol Ther Nucleic Acids. 2022 Apr 6;28:477-487. doi: 10.1016/j.omtn.2022.04.004. eCollection 2022 Jun 14.
4
Digital pathology and artificial intelligence.
Lancet Oncol. 2019 May;20(5):e253-e261. doi: 10.1016/S1470-2045(19)30154-8.
5
T-Cell Clustering in Neoplastic Follicles of Follicular Lymphoma.
Cancer Microenviron. 2018 Dec;11(2-3):135-140. doi: 10.1007/s12307-018-0217-1. Epub 2018 Sep 11.
6
Classification of follicular lymphoma: the effect of computer aid on pathologists grading.
BMC Med Inform Decis Mak. 2015 Dec 30;15:115. doi: 10.1186/s12911-015-0235-6.

本文引用的文献

4
Histopathological image analysis: a review.
IEEE Rev Biomed Eng. 2009;2:147-71. doi: 10.1109/RBME.2009.2034865. Epub 2009 Oct 30.
5
Detection of follicles from IHC-stained slides of follicular lymphoma using iterative watershed.
IEEE Trans Biomed Eng. 2010 Oct;57(10):2609-12. doi: 10.1109/TBME.2010.2058111. Epub 2010 Jul 15.
6
Computer-aided detection of centroblasts for follicular lymphoma grading using adaptive likelihood-based cell segmentation.
IEEE Trans Biomed Eng. 2010 Oct;57(10):2613-6. doi: 10.1109/TBME.2010.2055058. Epub 2010 Jun 28.
8
Computer-aided Prognosis of Neuroblastoma on Whole-slide Images: Classification of Stromal Development.
Pattern Recognit. 2009 Jun;42(6):1093-1103. doi: 10.1016/j.patcog.2008.08.027.
9
Extraction of color features in the spectral domain to recognize centroblasts in histopathology.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:3685-8. doi: 10.1109/IEMBS.2009.5334727.
10
Imaging mass spectrometry analysis for follicular lymphoma grading.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:6969-72. doi: 10.1109/IEMBS.2009.5333850.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验