Laboratoire Génome et Développement des Plantes, CNRS-UP-IRD UMR 5096, Université de Perpignan, 66860 Perpignan, France.
Plant Physiol. 2010 Feb;152(2):670-84. doi: 10.1104/pp.109.148247. Epub 2009 Dec 4.
In higher plants, lysophosphatidic acid acyltransferase (LPAAT), located in the cytoplasmic endomembrane compartment, plays an essential role in the synthesis of phosphatidic acid, a key intermediate in the biosynthesis of membrane phospholipids in all tissues and storage lipids in developing seeds. In order to assess the contribution of LPAATs to the synthesis of storage lipids, we have characterized two microsomal LPAAT isozymes, the products of homoeologous genes that are expressed in rapeseed (Brassica napus). DNA sequence homologies, complementation of a bacterial LPAAT-deficient mutant, and enzymatic properties confirmed that each of two cDNAs isolated from a Brassica napus immature embryo library encoded a functional LPAAT possessing the properties of a eukaryotic pathway enzyme. Analyses in planta revealed differences in the expression of the two genes, one of which was detected in all rapeseed tissues and during silique and seed development, whereas the expression of the second gene was restricted predominantly to siliques and developing seeds. Expression of each rapeseed LPAAT isozyme in Arabidopsis (Arabidopsis thaliana) resulted in the production of seeds characterized by a greater lipid content and seed mass. These results support the hypothesis that increasing the expression of glycerolipid acyltransferases in seeds leads to a greater flux of intermediates through the Kennedy pathway and results in enhanced triacylglycerol accumulation.
在高等植物中,溶血磷脂酸酰基转移酶(LPAAT)位于细胞质内膜隔间内,在磷脂酸的合成中发挥着重要作用,磷脂酸是所有组织中膜磷脂生物合成和发育种子中储存脂质的关键中间产物。为了评估 LPAAT 在储存脂质合成中的作用,我们已经对两种微粒体 LPAAT 同工酶进行了特征描述,它们是油菜(甘蓝型油菜)同源基因的产物。DNA 序列同源性、对细菌 LPAAT 缺陷突变体的互补以及酶特性证实,从油菜未成熟胚胎文库中分离的两个 cDNA 中的每一个都编码了一种具有真核途径酶特性的功能性 LPAAT。在植物体内的分析表明,两个基因的表达存在差异,其中一个在油菜的所有组织中以及在蒴果和种子发育过程中都有检测到,而第二个基因的表达主要局限于蒴果和发育中的种子。油菜 LPAAT 同工酶在拟南芥(拟南芥)中的表达导致产生了具有更高脂质含量和种子质量的种子。这些结果支持了这样一种假设,即增加种子中甘油磷脂酰基转移酶的表达会导致中间体通过 Kennedy 途径的通量增加,并导致三酰基甘油的积累增强。