Department of Chemistry, Box 351700, University of Washington, Seattle, Washington 98195, USA.
J Am Chem Soc. 2010 Jan 13;132(1):303-8. doi: 10.1021/ja907515s.
Many RNAs undergo large conformational changes in response to the binding of proteins and small molecules. However, when RNA functional dynamics occur in the nanosecond-microsecond time scale, they become invisible to traditional solution NMR relaxation methods. Residual dipolar coupling methods have revealed the presence of extensive nanosecond-microsecond domain motions in HIV-1 TAR RNA, but this technique lacks information on the rates of motions. We have used solid-state deuterium NMR to quantitatively describe trajectories of key residues in TAR by exploiting the sensitivity of this technique to motions that occur in the nanosecond-microsecond regime. Deuterium line shape and relaxation data were used to model motions of residues within the TAR binding interface. The resulting motional models indicate two functionally essential bases within the single-stranded bulge sample both the free and Tat-bound conformations on the microsecond time scale in the complete absence of the protein. Thus, our results strongly support a conformational capture mechanism for recognition: the protein does not induce a new RNA structure, but instead captures an already-populated conformation.
许多 RNA 会在与蛋白质和小分子结合时发生大的构象变化。然而,当 RNA 功能动力学发生在纳秒-微秒时间尺度时,它们就会超出传统的溶液 NMR 弛豫方法的检测范围。残剩偶极耦合方法已经揭示了 HIV-1 TAR RNA 中存在广泛的纳秒-微秒域运动,但该技术缺乏对运动速率的信息。我们已经使用固态氘 NMR 通过利用该技术对纳秒-微秒范围内发生的运动的灵敏度,来定量描述 TAR 中的关键残基的轨迹。氘线形状和弛豫数据被用于对 TAR 结合界面内的残基运动进行建模。所得的运动模型表明,在完整的无蛋白质的情况下,单链凸起样本中的两个功能必需碱基在微秒时间尺度上同时具有自由和 Tat 结合构象。因此,我们的结果强烈支持构象捕获机制的识别:蛋白质不会诱导新的 RNA 结构,而是捕获已经存在的构象。