Suppr超能文献

(N)Fe(μ-H)Fe(N) 的 ENDOR 特征:二 μ-氢氮酶 Janus 中间物氮结合的光谱模型。

ENDOR Characterization of (N)Fe(μ-H)Fe(N): A Spectroscopic Model for N Binding by the Di-μ-hydrido Nitrogenase Janus Intermediate.

机构信息

Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States.

Division of Chemistry and Chemical Engineering , California Institute of Technology (Caltech) , Pasadena , California 91125 , United States.

出版信息

Inorg Chem. 2018 Oct 1;57(19):12323-12330. doi: 10.1021/acs.inorgchem.8b02021. Epub 2018 Sep 17.

Abstract

The biomimetic diiron complex 4-(N), featuring two terminally bound Fe-N centers bridged by two hydrides, serves as a model for two possible states along the pathway by which the enzyme nitrogenase reduces N. One is the Janus intermediate E(4H), which has accumulated 4[e-/H+], stored as two [Fe-H-Fe] bridging hydrides, and is activated to bind and reduce N through reductive elimination (RE) of the hydride ligands as H. The second is a possible RE intermediate. H and N 35 GHz ENDOR measurements confirm that the formally Fe(II)/Fe(I) 4-(N) complex exhibits a fully delocalized, Robin-Day type-III mixed valency. The two bridging hydrides exhibit a fully rhombic dipolar tensor form, T ≈ [- t, + t, 0]. The rhombic form is reproduced by a simple point-dipole model for dipolar interactions between a bridging hydride and its "anchor" Fe ions, confirming validity of this model and demonstrating that observation of a rhombic form is a convenient diagnostic signature for the identification of such core structures in biological centers such as nitrogenase. Furthermore, interpretation of the H measurements with the anchor model maps the g tensor onto the molecular frame, an important function of these equations for application to nitrogenase. Analysis of the hyperfine and quadrupole coupling to the bound N of N provides a reference for nitrogen-bound nitrogenase intermediates and is of chemical significance, as it gives a quantitative estimate of the amount of charge transferred between Fe and coordinated N, a key element in N activation for reduction.

摘要

仿生双铁配合物 4-(N),具有两个末端结合的 Fe-N 中心,由两个氢化物桥接,作为酶固氮还原 N 途径中两种可能状态的模型。一种是 Janus 中间体 E(4H),它积累了 4[e-/H+],作为两个[Fe-H-Fe]桥接氢化物储存,并通过氢化物配体的还原消除 (RE) 作为 H 被激活以结合和还原 N。第二种是可能的 RE 中间体。H 和 N 35 GHz ENDOR 测量证实,形式上为 Fe(II)/Fe(I) 4-(N)配合物表现出完全离域的 Robin-Day 型 III 混合价态。两个桥接氢化物表现出完全的菱形偶极张量形式,T ≈ [-t, +t, 0]。偶极子相互作用的简单点偶极子模型再现了菱形形式,证实了该模型的有效性,并表明观察到菱形形式是识别生物中心(如固氮酶)中此类核心结构的方便诊断特征。此外,用锚模型对 H 测量的解释将 g 张量映射到分子框架上,这对于将这些方程应用于固氮酶是一个重要的功能。结合氮的结合氮的超精细和四极耦合的分析为氮结合的固氮酶中间体提供了参考,并且具有化学意义,因为它定量估计了 Fe 和配位 N 之间转移的电荷量,这是 N 活化还原的关键因素。

相似文献

1
ENDOR Characterization of (N)Fe(μ-H)Fe(N): A Spectroscopic Model for N Binding by the Di-μ-hydrido Nitrogenase Janus Intermediate.
Inorg Chem. 2018 Oct 1;57(19):12323-12330. doi: 10.1021/acs.inorgchem.8b02021. Epub 2018 Sep 17.
2
Modeling the signatures of hydrides in metalloenzymes: ENDOR analysis of a Di-iron Fe(μ-NH)(μ-H)Fe core.
J Am Chem Soc. 2012 Aug 1;134(30):12637-47. doi: 10.1021/ja303739g. Epub 2012 Jul 23.
5
Time-Resolved EPR Study of H Reductive Elimination from the Photoexcited Nitrogenase Janus E(4H) Intermediate.
J Phys Chem B. 2019 Oct 17;123(41):8823-8828. doi: 10.1021/acs.jpcb.9b07776. Epub 2019 Oct 8.
6
Kinetic Understanding of N Reduction versus H Evolution at the E(4H) Janus State in the Three Nitrogenases.
Biochemistry. 2018 Oct 2;57(39):5706-5714. doi: 10.1021/acs.biochem.8b00784. Epub 2018 Sep 19.
7
Reversible Photoinduced Reductive Elimination of H2 from the Nitrogenase Dihydride State, the E(4)(4H) Janus Intermediate.
J Am Chem Soc. 2016 Feb 3;138(4):1320-7. doi: 10.1021/jacs.5b11650. Epub 2016 Jan 20.
8
ENDOR characterization of a synthetic diiron hydrazido complex as a model for nitrogenase intermediates.
J Am Chem Soc. 2008 Jan 16;130(2):546-55. doi: 10.1021/ja073934x. Epub 2007 Dec 20.
9
A 10(6)-fold enhancement in N2-binding affinity of an Fe2(μ-H)2 core upon reduction to a mixed-valence Fe(II)Fe(I) state.
J Am Chem Soc. 2014 Oct 1;136(39):13853-62. doi: 10.1021/ja507217v. Epub 2014 Sep 18.

引用本文的文献

2
Mechanism of Nitrogen Reduction to Ammonia in a Diiron Model of Nitrogenase.
Inorg Chem. 2023 Sep 11;62(36):14715-14726. doi: 10.1021/acs.inorgchem.3c02089. Epub 2023 Aug 31.
3
Understanding the Electronic Structure Basis for N Binding to FeMoco: A Systematic Quantum Mechanics/Molecular Mechanics Investigation.
Inorg Chem. 2023 Apr 10;62(14):5357-5375. doi: 10.1021/acs.inorgchem.2c03967. Epub 2023 Mar 29.
5
The Spectroscopy of Nitrogenases.
Chem Rev. 2020 Jun 24;120(12):5005-5081. doi: 10.1021/acs.chemrev.9b00650. Epub 2020 Apr 2.

本文引用的文献

1
Photoinduced Reductive Elimination of H from the Nitrogenase Dihydride (Janus) State Involves a FeMo-cofactor-H Intermediate.
Inorg Chem. 2017 Feb 20;56(4):2233-2240. doi: 10.1021/acs.inorgchem.6b02899. Epub 2017 Feb 8.
3
Reversible Photoinduced Reductive Elimination of H2 from the Nitrogenase Dihydride State, the E(4)(4H) Janus Intermediate.
J Am Chem Soc. 2016 Feb 3;138(4):1320-7. doi: 10.1021/jacs.5b11650. Epub 2016 Jan 20.
4
Diiron bridged-thiolate complexes that bind N2 at the Fe(II)Fe(II), Fe(II)Fe(I), and Fe(I)Fe(I) redox states.
J Am Chem Soc. 2015 Jun 17;137(23):7310-3. doi: 10.1021/jacs.5b04738. Epub 2015 Jun 9.
6
A 10(6)-fold enhancement in N2-binding affinity of an Fe2(μ-H)2 core upon reduction to a mixed-valence Fe(II)Fe(I) state.
J Am Chem Soc. 2014 Oct 1;136(39):13853-62. doi: 10.1021/ja507217v. Epub 2014 Sep 18.
7
Mechanism of nitrogen fixation by nitrogenase: the next stage.
Chem Rev. 2014 Apr 23;114(8):4041-62. doi: 10.1021/cr400641x. Epub 2014 Jan 27.
8
On reversible H2 loss upon N2 binding to FeMo-cofactor of nitrogenase.
Proc Natl Acad Sci U S A. 2013 Oct 8;110(41):16327-32. doi: 10.1073/pnas.1315852110. Epub 2013 Sep 23.
9
Nitrogenase: a draft mechanism.
Acc Chem Res. 2013 Feb 19;46(2):587-95. doi: 10.1021/ar300267m. Epub 2013 Jan 4.
10
Modeling the signatures of hydrides in metalloenzymes: ENDOR analysis of a Di-iron Fe(μ-NH)(μ-H)Fe core.
J Am Chem Soc. 2012 Aug 1;134(30):12637-47. doi: 10.1021/ja303739g. Epub 2012 Jul 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验