Bhopal Raj
Public Health Sciences, Centre for Population Health Sciences, University of Edinburgh, Edinburgh, UK.
Emerg Themes Epidemiol. 2009 Dec 9;6:6. doi: 10.1186/1742-7622-6-6.
All sciences make mistakes, and epidemiology is no exception. I have chosen 7 illustrative mistakes and derived 7 solutions to avoid them. The mistakes (Roman numerals denoting solutions) are: 1. Failing to provide the context and definitions of study populations. (I Describe the study population in detail) 2. Insufficient attention to evaluation of error. (II Don't pretend error does not exist.) 3. Not demonstrating comparisons are like-for-like. (III Start with detailed comparisons of groups.) 4. Either overstatement or understatement of the case for causality. (IV Never say this design cannot contribute to causality or imply causality is ensured by your design.) 5. Not providing both absolute and relative summary measures. (V Give numbers, rates and comparative measures, and adjust summary measures such as odds ratios appropriately.) 6. In intervention studies not demonstrating general health benefits. (VI Ensure general benefits (mortality/morbidity) before recommending application of cause-specific findings.) 7. Failure to utilise study data to benefit populations. (VII Establish a World Council on Epidemiology to help infer causality from associations and apply the work internationally.) Analysis of these and other common mistakes is needed to benefit from the increasing discovery of associations that will be multiplying as data mining, linkage, and large-scale scale epidemiology become commonplace.
所有科学都会犯错,流行病学也不例外。我挑选了7个具有代表性的错误,并得出了7个避免这些错误的解决方案。这些错误(用罗马数字表示解决方案)分别是:1. 未提供研究人群的背景和定义。(I 详细描述研究人群)2. 对误差评估关注不足。(II 不要假装误差不存在)3. 未证明比较是同类相比。(III 从详细的组间比较开始)4. 对因果关系的阐述要么夸大要么轻描淡写。(IV 绝不要说这种设计对因果关系没有贡献,也不要暗示你的设计能确保因果关系)5. 未同时提供绝对和相对的汇总指标。(V 给出数字、比率和比较指标,并适当调整诸如比值比等汇总指标)6. 在干预研究中未证明对总体健康有益。(VI 在推荐应用特定病因的研究结果之前,确保有总体益处(死亡率/发病率))7. 未能利用研究数据使人群受益。(VII 成立一个世界流行病学理事会,以帮助从关联中推断因果关系并在国际上应用这项工作)需要对这些以及其他常见错误进行分析,以便从不断增加的关联发现中获益,随着数据挖掘、数据链接和大规模流行病学变得越来越普遍,这种关联发现将会成倍增加。