Center for Nanotechnology & Advanced Biomaterials, SASTRA University, Thanjavur, India.
Acta Biomater. 2010 Jun;6(6):1931-7. doi: 10.1016/j.actbio.2009.12.012. Epub 2009 Dec 24.
The versatility of polymers for tissue regeneration lies in the feasibility to modulate the physical and biological properties by varying the side groups grafted to the polymers. Biodegradable polyphosphazenes are high-molecular-weight polymers with alternating nitrogen and phosphorus atoms in the backbone. This study is the first of its kind to systematically investigate the effect of side group structure on the compressive strength of novel biodegradable polyphosphazene based polymers as potential materials for tissue regeneration. The alanine polyphosphazene based polymers, poly(bis(ethyl alanato) phosphazene) (PNEA), poly((50% ethyl alanato) (50% methyl phenoxy) phosphazene) (PNEA(50)mPh(50)), poly((50% ethyl alanato) (50% phenyl phenoxy) phosphazene) (PNEA(50)PhPh(50)) were investigated to demonstrate their mechanical properties and osteocompatibility. Results of mechanical testing studies demonstrated that the nature and the ratio of the pendent groups attached to the polymer backbone play a significant role in determining the mechanical properties of the resulting polymer. The compressive strength of PNEA(50)PhPh(50) was significantly higher than poly(lactide-co-glycolide) (85:15 PLAGA) (p<0.05). Additional studies evaluated the cellular response and gene expression of primary rat osteoblast cells on PNEA, PNEA(50)mPh(50) and PNEA(50)PhPh(50) films as candidates for bone tissue engineering applications. Results of the in vitro osteocompatibility evaluation demonstrated that cells adhere, proliferate, and maintain their phenotype when seeded directly on the surface of PNEA, PNEA(50)mPh(50), and PNEA(50)PhPh(50). Moreover, cells on the surface of the polymers expressed type I collagen, alkaline phosphatase, osteocalcin, osteopontin, and bone sialoprotein, which are characteristic genes for osteoblast maturation, differentiation, and mineralization.
聚合物在组织再生中的多功能性在于通过改变接枝到聚合物上的侧基来调节物理和生物性质的可行性。可生物降解的聚膦嗪是具有交替氮和磷原子的高分子量聚合物在骨架中。这项研究是首例系统研究侧基结构对新型可生物降解聚膦嗪基聚合物压缩强度的影响,这些聚合物是组织再生的潜在材料。基于丙氨酸的聚膦嗪基聚合物,聚(双(乙基丙氨酸)膦嗪)(PNEA)、聚((50%乙基丙氨酸)(50%甲基苯氧基)膦嗪)(PNEA(50)mPh(50))、聚((50%乙基丙氨酸)(50%苯基苯氧基)膦嗪)(PNEA(50)PhPh(50))被研究以证明它们的机械性能和骨相容性。力学性能研究结果表明,连接到聚合物主链上的侧基的性质和比例在决定聚合物的力学性能方面起着重要作用。PNEA(50)PhPh(50)的抗压强度明显高于聚(乳酸-共-乙醇酸)(85:15 PLAGA)(p<0.05)。进一步的研究评估了原发性大鼠成骨细胞在 PNEA、PNEA(50)mPh(50)和 PNEA(50)PhPh(50)薄膜上的细胞反应和基因表达作为骨组织工程应用的候选物。体外骨相容性评估结果表明,当直接接种在 PNEA、PNEA(50)mPh(50)和 PNEA(50)PhPh(50)表面时,细胞可以附着、增殖并保持其表型。此外,聚合物表面上的细胞表达 I 型胶原蛋白、碱性磷酸酶、骨钙素、骨桥蛋白和骨唾液蛋白,这些是成骨细胞成熟、分化和矿化的特征基因。