Suppr超能文献

从生物物理时间序列中学习率和状态:一种贝叶斯方法用于模型选择和单分子 FRET 数据。

Learning rates and states from biophysical time series: a Bayesian approach to model selection and single-molecule FRET data.

机构信息

Department of Chemistry, Columbia University, New York, New York, USA.

出版信息

Biophys J. 2009 Dec 16;97(12):3196-205. doi: 10.1016/j.bpj.2009.09.031.

Abstract

Time series data provided by single-molecule Förster resonance energy transfer (smFRET) experiments offer the opportunity to infer not only model parameters describing molecular complexes, e.g., rate constants, but also information about the model itself, e.g., the number of conformational states. Resolving whether such states exist or how many of them exist requires a careful approach to the problem of model selection, here meaning discrimination among models with differing numbers of states. The most straightforward approach to model selection generalizes the common idea of maximum likelihood--selecting the most likely parameter values--to maximum evidence: selecting the most likely model. In either case, such an inference presents a tremendous computational challenge, which we here address by exploiting an approximation technique termed variational Bayesian expectation maximization. We demonstrate how this technique can be applied to temporal data such as smFRET time series; show superior statistical consistency relative to the maximum likelihood approach; compare its performance on smFRET data generated from experiments on the ribosome; and illustrate how model selection in such probabilistic or generative modeling can facilitate analysis of closely related temporal data currently prevalent in biophysics. Source code used in this analysis, including a graphical user interface, is available open source via http://vbFRET.sourceforge.net.

摘要

时间序列数据由单分子Förster 共振能量转移(smFRET)实验提供,不仅有机会推断描述分子复合物的模型参数,例如速率常数,还可以推断模型本身的信息,例如构象状态的数量。要确定是否存在这样的状态以及存在多少状态,需要仔细考虑模型选择问题,这里是指区分具有不同状态数量的模型。模型选择的最直接方法是将最大似然的常见思想(选择最可能的参数值)推广到最大证据:选择最可能的模型。在这两种情况下,这种推断都提出了巨大的计算挑战,我们通过利用一种称为变分贝叶斯期望最大化的近似技术来解决这个问题。我们展示了如何将该技术应用于 smFRET 时间序列等时间数据;与最大似然方法相比,表现出更高的统计一致性;比较它在核糖体实验生成的 smFRET 数据上的性能;并说明这种概率或生成模型中的模型选择如何有助于分析生物物理学中当前流行的密切相关的时间数据。该分析中使用的源代码,包括图形用户界面,可通过 http://vbFRET.sourceforge.net 以开源方式获得。

相似文献

2
Graphical models for inferring single molecule dynamics.
BMC Bioinformatics. 2010 Oct 26;11 Suppl 8(Suppl 8):S2. doi: 10.1186/1471-2105-11-S8-S2.
3
Empirical Bayes methods enable advanced population-level analyses of single-molecule FRET experiments.
Biophys J. 2014 Mar 18;106(6):1327-37. doi: 10.1016/j.bpj.2013.12.055.
4
Inferring Markov chains: Bayesian estimation, model comparison, entropy rate, and out-of-class modeling.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Jul;76(1 Pt 1):011106. doi: 10.1103/PhysRevE.76.011106. Epub 2007 Jul 12.
5
Bayesian inference of accurate population sizes and FRET efficiencies from single diffusing biomolecules.
Anal Chem. 2014 Sep 2;86(17):8603-12. doi: 10.1021/ac501188r. Epub 2014 Aug 18.
6
Variational Bayes analysis of a photon-based hidden Markov model for single-molecule FRET trajectories.
Biophys J. 2012 Sep 19;103(6):1315-24. doi: 10.1016/j.bpj.2012.07.047.
7
Markov and Semi-Markov switching of source appearances for nonstationary independent component analysis.
IEEE Trans Neural Netw. 2007 Sep;18(5):1326-42. doi: 10.1109/tnn.2007.895829.
10
A Bayesian Nonparametric Approach to Single Molecule Förster Resonance Energy Transfer.
J Phys Chem B. 2019 Jan 24;123(3):675-688. doi: 10.1021/acs.jpcb.8b09752. Epub 2019 Jan 10.

引用本文的文献

2
An RNA modification prevents extended codon-anticodon interactions from facilitating +1 frameshifting.
Nat Commun. 2025 Aug 11;16(1):7392. doi: 10.1038/s41467-025-62342-4.
3
Competition for Hfq drives kinetic selection of mRNA targets by small noncoding RNAs.
Proc Natl Acad Sci U S A. 2025 Jul 15;122(28):e2503747122. doi: 10.1073/pnas.2503747122. Epub 2025 Jul 10.
4
Observation of SAM-VI Riboswitch Dynamics Using Single-Molecule FRET.
Biomolecules. 2025 Jun 9;15(6):841. doi: 10.3390/biom15060841.
7
Membrane phosphoinositides allosterically tune β-arrestin dynamics to facilitate GPCR core engagement.
bioRxiv. 2025 Jun 8:2025.06.06.658200. doi: 10.1101/2025.06.06.658200.
8
Considering the effect of Pi rebinding on myosin dynamics based on the distinct functions of cardiac and skeletal myosin.
Front Physiol. 2025 May 16;16:1605321. doi: 10.3389/fphys.2025.1605321. eCollection 2025.
10
A Bayesian Model to Count the Number of Two-State Emitters in a Diffraction Limited Spot.
Nano Lett. 2025 Apr 16;25(15):6059-6068. doi: 10.1021/acs.nanolett.4c06304. Epub 2025 Apr 4.

本文引用的文献

1
Allosteric collaboration between elongation factor G and the ribosomal L1 stalk directs tRNA movements during translation.
Proc Natl Acad Sci U S A. 2009 Sep 15;106(37):15702-7. doi: 10.1073/pnas.0908077106. Epub 2009 Aug 27.
3
Translation factors direct intrinsic ribosome dynamics during translation termination and ribosome recycling.
Nat Struct Mol Biol. 2009 Aug;16(8):861-8. doi: 10.1038/nsmb.1622. Epub 2009 Jul 13.
4
Following movement of the L1 stalk between three functional states in single ribosomes.
Proc Natl Acad Sci U S A. 2009 Feb 24;106(8):2571-6. doi: 10.1073/pnas.0813180106. Epub 2009 Feb 3.
5
Intersubunit coordination in a homomeric ring ATPase.
Nature. 2009 Jan 22;457(7228):446-50. doi: 10.1038/nature07637. Epub 2009 Jan 7.
6
Structure of ratcheted ribosomes with tRNAs in hybrid states.
Proc Natl Acad Sci U S A. 2008 Nov 4;105(44):16924-7. doi: 10.1073/pnas.0809587105. Epub 2008 Oct 29.
7
Visualization of the hybrid state of tRNA binding promoted by spontaneous ratcheting of the ribosome.
Mol Cell. 2008 Oct 24;32(2):190-7. doi: 10.1016/j.molcel.2008.10.001.
8
Spontaneous intersubunit rotation in single ribosomes.
Mol Cell. 2008 Jun 6;30(5):578-88. doi: 10.1016/j.molcel.2008.05.004.
9
A practical guide to single-molecule FRET.
Nat Methods. 2008 Jun;5(6):507-16. doi: 10.1038/nmeth.1208.
10
Coupling of ribosomal L1 stalk and tRNA dynamics during translation elongation.
Mol Cell. 2008 May 9;30(3):348-59. doi: 10.1016/j.molcel.2008.03.012.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验