Department of Chemistry, Columbia University, New York, NY 10027, USA.
BMC Bioinformatics. 2010 Oct 26;11 Suppl 8(Suppl 8):S2. doi: 10.1186/1471-2105-11-S8-S2.
The recent explosion of experimental techniques in single molecule biophysics has generated a variety of novel time series data requiring equally novel computational tools for analysis and inference. This article describes in general terms how graphical modeling may be used to learn from biophysical time series data using the variational Bayesian expectation maximization algorithm (VBEM). The discussion is illustrated by the example of single-molecule fluorescence resonance energy transfer (smFRET) versus time data, where the smFRET time series is modeled as a hidden Markov model (HMM) with Gaussian observables. A detailed description of smFRET is provided as well.
The VBEM algorithm returns the model's evidence and an approximating posterior parameter distribution given the data. The former provides a metric for model selection via maximum evidence (ME), and the latter a description of the model's parameters learned from the data. ME/VBEM provide several advantages over the more commonly used approach of maximum likelihood (ML) optimized by the expectation maximization (EM) algorithm, the most important being a natural form of model selection and a well-posed (non-divergent) optimization problem.
The results demonstrate the utility of graphical modeling for inference of dynamic processes in single molecule biophysics.
单分子生物物理学中的实验技术的爆炸式发展,产生了各种需要新型计算工具进行分析和推断的新型时间序列数据。本文以单分子荧光共振能量转移(smFRET)随时间变化的数据为例,简述了如何使用变分贝叶斯期望最大化算法(VBEM)通过图形建模来从生物物理时间序列数据中进行学习。讨论中还对 smFRET 进行了详细描述。
VBEM 算法返回模型的证据和给定数据的近似后验参数分布。前者通过最大证据(ME)提供了模型选择的度量标准,后者通过数据学习模型的参数。ME/VBEM 相对于更常用的最大似然(ML)方法具有多个优势,通过期望最大化(EM)算法进行优化,最重要的是具有自然的模型选择形式和良好定义(非发散)的优化问题。
结果证明了图形建模在单分子生物物理学中推断动态过程的实用性。