Department of Pharmacology, University of Washington, Seattle, WA 98195-7280, USA.
Proc Natl Acad Sci U S A. 2009 Dec 29;106(52):22498-503. doi: 10.1073/pnas.0912307106. Epub 2009 Dec 10.
Electrical signaling in biology depends upon a unique electromechanical transduction process mediated by the S4 segments of voltage-gated ion channels. These transmembrane segments are driven outward by the force of the electric field on positively charged amino acid residues termed "gating charges," which are positioned at three-residue intervals in the S4 transmembrane segment, and this movement is coupled to opening of the pore. Here, we use the disulfide-locking method to demonstrate sequential ion pair formation between the fourth gating charge in the S4 segment (R4) and two acidic residues in the S2 segment during activation. R4 interacts first with E70 at the intracellular end of the S2 segment and then with D60 near the extracellular end. Analysis with the Rosetta Membrane method reveals the 3-D structures of the gating pore as these ion pairs are formed sequentially to catalyze the S4 transmembrane movement required for voltage-dependent activation. Our results directly demonstrate sequential ion pair formation that is an essential feature of the sliding helix model of voltage sensor function but is not compatible with the other widely discussed gating models.
生物学中的电信号依赖于电压门控离子通道的 S4 片段介导的独特机电转导过程。这些跨膜片段由电场对称为“门控电荷”的带正电荷的氨基酸残基的力驱动向外移动,这些电荷残基在 S4 跨膜片段中以三残基间隔定位,并且这种运动与孔的打开偶联。在这里,我们使用二硫键锁定方法来证明在激活过程中,S4 片段中的第四个门控电荷 (R4) 与 S2 片段中的两个酸性残基之间的顺序离子对形成。R4 首先与 S2 片段细胞内末端的 E70 相互作用,然后与细胞外末端附近的 D60 相互作用。使用 Rosetta Membrane 方法进行分析揭示了门控孔的 3-D 结构,因为这些离子对依次形成以催化电压依赖性激活所需的 S4 跨膜运动。我们的结果直接证明了顺序离子对形成是电压传感器功能的滑动螺旋模型的基本特征,但与其他广泛讨论的门控模型不兼容。