Suppr超能文献

癌症分子流行病学的发展。

The evolving discipline of molecular epidemiology of cancer.

机构信息

Department of Epidemiology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.

出版信息

Carcinogenesis. 2010 Jan;31(1):127-34. doi: 10.1093/carcin/bgp246. Epub 2009 Dec 18.

Abstract

Classical epidemiologic studies have made seminal contributions to identifying the etiology of most common cancers. Molecular epidemiology was conceived of as an extension of traditional epidemiology to incorporate biomarkers with questionnaire data to further our understanding of the mechanisms of carcinogenesis. Early molecular epidemiologic studies employed functional assays. These studies were hampered by the need for sequential and/or prediagnostic samples, viable lymphocytes and the uncertainty of how well these functional data (derived from surrogate lymphocytic tissue) reflected events in the target tissue. The completion of the Human Genome Project and Hapmap Project, together with the unparalleled advances in high-throughput genotyping revolutionized the practice of molecular epidemiology. Early studies had been constrained by existing technology to use the hypothesis-driven candidate gene approach, with disappointing results. Pathway analysis addressed some of the concerns, although the study of interacting and overlapping gene networks remained a challenge. Whole-genome scanning approaches were designed as agnostic studies using a dense set of markers to capture much of the common genome variation to study germ-line genetic variation as risk factors for common complex diseases. It should be possible to exploit the wealth of these data for pharmacogenetic studies to realize the promise of personalized therapy. Going forward, the temptation for epidemiologists to be lured by high-tech 'omics' will be immense. Systems Epidemiology, the observational prototype of systems biology, is an extension of classical epidemiology to include powerful new platforms such as the transcriptome, proteome and metabolome. However, there will always be the need for impeccably designed and well-powered epidemiologic studies with rigorous quality control of data, specimen acquisition and statistical analysis.

摘要

经典的流行病学研究为确定大多数常见癌症的病因做出了重要贡献。分子流行病学被认为是传统流行病学的延伸,它将生物标志物与问卷数据相结合,以进一步了解致癌机制。早期的分子流行病学研究采用了功能测定法。这些研究受到需要连续的和/或诊断前样本、可存活的淋巴细胞以及这些功能数据(源自替代淋巴细胞组织)在多大程度上反映靶组织中事件的不确定性的阻碍。人类基因组计划和 Hapmap 计划的完成,以及高通量基因分型技术的空前进步,彻底改变了分子流行病学的实践。早期的研究受到现有技术的限制,只能采用基于假设的候选基因方法,结果令人失望。途径分析解决了一些问题,尽管相互作用和重叠基因网络的研究仍然是一个挑战。全基因组扫描方法被设计为使用密集的标记集进行无偏研究,以捕获大部分常见的基因组变异,从而研究种系遗传变异作为常见复杂疾病的风险因素。应该有可能利用这些数据进行药物遗传学研究,以实现个性化治疗的承诺。展望未来,对流行病学家来说,被高科技“组学”所诱惑的诱惑将是巨大的。系统流行病学是系统生物学的观察原型,它是传统流行病学的延伸,包括转录组、蛋白质组和代谢组等强大的新平台。然而,始终需要设计完美、功能强大的流行病学研究,严格控制数据、标本采集和统计分析的质量。

相似文献

1
The evolving discipline of molecular epidemiology of cancer.
Carcinogenesis. 2010 Jan;31(1):127-34. doi: 10.1093/carcin/bgp246. Epub 2009 Dec 18.
2
Epigenetics in molecular epidemiology of cancer a new scope.
Adv Genet. 2010;71:211-35. doi: 10.1016/B978-0-12-380864-6.00007-9.
3
Systems epidemiology in cancer.
Cancer Epidemiol Biomarkers Prev. 2008 Nov;17(11):2954-7. doi: 10.1158/1055-9965.EPI-08-0519.
4
Molecular epidemiology of cancer.
CA Cancer J Clin. 2005 Jan-Feb;55(1):45-54; quiz 57. doi: 10.3322/canjclin.55.1.45.
6
Molecular epidemiology and biomarkers in etiologic cancer research: the new in light of the old.
Cancer Epidemiol Biomarkers Prev. 2007 Oct;16(10):1954-65. doi: 10.1158/1055-9965.EPI-07-0457.
7
Omics and the Search for Blood Biomarkers in Chronic Obstructive Pulmonary Disease. Insights from COPDGene.
Am J Respir Cell Mol Biol. 2019 Aug;61(2):143-149. doi: 10.1165/rcmb.2018-0245PS.
8
New training tools for new epidemiologists.
Environ Mol Mutagen. 2013 Aug;54(7):611-5. doi: 10.1002/em.21793. Epub 2013 Jul 26.
10
Toxicology and genetic toxicology in the new era of "toxicogenomics": impact of "-omics" technologies.
Mutat Res. 2002 Jan 29;499(1):13-25. doi: 10.1016/s0027-5107(01)00292-5.

引用本文的文献

1
Current status and risk determinants of locomotive syndrome in geriatric cancer survivors in China-a single-center cross-sectional survey.
Front Public Health. 2024 Nov 29;12:1421280. doi: 10.3389/fpubh.2024.1421280. eCollection 2024.
3
The use of genotoxicity biomarkers in molecular epidemiology: applications in environmental, occupational and dietary studies.
AIMS Genet. 2017 Aug 11;4(3):166-191. doi: 10.3934/genet.2017.3.166. eCollection 2017.
5
Adding Mendelian randomization to a meta-analysis-a burgeoning opportunity.
Tumour Biol. 2016 Feb;37(2):1527-9. doi: 10.1007/s13277-015-4680-8. Epub 2015 Dec 22.
6
Translational cancer research: balancing prevention and treatment to combat cancer globally.
J Natl Cancer Inst. 2014 Dec 16;107(1):353. doi: 10.1093/jnci/dju353. Print 2015 Jan.
7
Integrating genetic and genomic information into effective cancer care in diverse populations.
Ann Oncol. 2013 Oct;24 Suppl 7(Suppl 7):vii48-54. doi: 10.1093/annonc/mdt264.
8
"Drivers" of translational cancer epidemiology in the 21st century: needs and opportunities.
Cancer Epidemiol Biomarkers Prev. 2013 Feb;22(2):181-8. doi: 10.1158/1055-9965.EPI-12-1262. Epub 2013 Jan 15.
10
Grand challenges in cancer epidemiology and prevention.
Front Oncol. 2011 Apr 27;1:3. doi: 10.3389/fonc.2011.00003. eCollection 2011.

本文引用的文献

1
Re: Discriminatory accuracy from single-nucleotide polymorphisms in models to predict breast cancer risk.
J Natl Cancer Inst. 2009 Dec 16;101(24):1731-2; author reply 1732. doi: 10.1093/jnci/djp394.
2
Genetics of human gene expression: mapping DNA variants that influence gene expression.
Nat Rev Genet. 2009 Sep;10(9):595-604. doi: 10.1038/nrg2630. Epub 2009 Jul 28.
3
Genome-wide association study identifies five susceptibility loci for glioma.
Nat Genet. 2009 Aug;41(8):899-904. doi: 10.1038/ng.407. Epub 2009 Jul 5.
5
Value of adding single-nucleotide polymorphism genotypes to a breast cancer risk model.
J Natl Cancer Inst. 2009 Jul 1;101(13):959-63. doi: 10.1093/jnci/djp130. Epub 2009 Jun 17.
6
Complex diseases, complex genes: keeping pathways on the right track.
Epidemiology. 2009 Jul;20(4):508-11. doi: 10.1097/EDE.0b013e3181a93b98.
8
Genetic risk prediction--are we there yet?
N Engl J Med. 2009 Apr 23;360(17):1701-3. doi: 10.1056/NEJMp0810107. Epub 2009 Apr 15.
9
Human genetic variation and its contribution to complex traits.
Nat Rev Genet. 2009 Apr;10(4):241-51. doi: 10.1038/nrg2554.
10
MicroRNA polymorphisms: the future of pharmacogenomics, molecular epidemiology and individualized medicine.
Pharmacogenomics. 2009 Mar;10(3):399-416. doi: 10.2217/14622416.10.3.399.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验