文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于读段比对不确定性的 RNA-Seq 基因表达估计。

RNA-Seq gene expression estimation with read mapping uncertainty.

机构信息

Department of Computer Sciences, University of Wisconsin, Madison, WI 53706, USA.

出版信息

Bioinformatics. 2010 Feb 15;26(4):493-500. doi: 10.1093/bioinformatics/btp692. Epub 2009 Dec 18.


DOI:10.1093/bioinformatics/btp692
PMID:20022975
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC2820677/
Abstract

MOTIVATION: RNA-Seq is a promising new technology for accurately measuring gene expression levels. Expression estimation with RNA-Seq requires the mapping of relatively short sequencing reads to a reference genome or transcript set. Because reads are generally shorter than transcripts from which they are derived, a single read may map to multiple genes and isoforms, complicating expression analyses. Previous computational methods either discard reads that map to multiple locations or allocate them to genes heuristically. RESULTS: We present a generative statistical model and associated inference methods that handle read mapping uncertainty in a principled manner. Through simulations parameterized by real RNA-Seq data, we show that our method is more accurate than previous methods. Our improved accuracy is the result of handling read mapping uncertainty with a statistical model and the estimation of gene expression levels as the sum of isoform expression levels. Unlike previous methods, our method is capable of modeling non-uniform read distributions. Simulations with our method indicate that a read length of 20-25 bases is optimal for gene-level expression estimation from mouse and maize RNA-Seq data when sequencing throughput is fixed.

摘要

动机:RNA-Seq 是一种很有前途的新技术,可以准确测量基因表达水平。使用 RNA-Seq 进行表达估计需要将相对较短的测序读取映射到参考基因组或转录本集。由于读取通常比它们衍生的转录本短,因此单个读取可能会映射到多个基因和异构体,从而使表达分析变得复杂。以前的计算方法要么丢弃映射到多个位置的读取,要么根据启发式方法将它们分配给基因。

结果:我们提出了一种生成式统计模型和相关的推理方法,以合理的方式处理读取映射不确定性。通过用真实的 RNA-Seq 数据参数化的模拟,我们表明我们的方法比以前的方法更准确。我们提高的准确性是通过使用统计模型处理读取映射不确定性和将基因表达水平估计为异构体表达水平之和的结果。与以前的方法不同,我们的方法能够对非均匀的读取分布进行建模。当测序通量固定时,使用我们的方法进行模拟表明,对于来自小鼠和玉米的 RNA-Seq 数据的基因水平表达估计,20-25 个碱基的读取长度是最优的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d114/2820677/f899542fcf00/btp692f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d114/2820677/dc9aca6d60d9/btp692f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d114/2820677/f899542fcf00/btp692f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d114/2820677/dc9aca6d60d9/btp692f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d114/2820677/f899542fcf00/btp692f2.jpg

相似文献

[1]
RNA-Seq gene expression estimation with read mapping uncertainty.

Bioinformatics. 2009-12-18

[2]
Zea mays RNA-seq estimated transcript abundances are strongly affected by read mapping bias.

BMC Genomics. 2021-4-20

[3]
Haplotype and isoform specific expression estimation using multi-mapping RNA-seq reads.

Genome Biol. 2011-2-10

[4]
TIGAR2: sensitive and accurate estimation of transcript isoform expression with longer RNA-Seq reads.

BMC Genomics. 2014

[5]
Using non-uniform read distribution models to improve isoform expression inference in RNA-Seq.

Bioinformatics. 2010-12-17

[6]
Improving RNA-Seq expression estimation by modeling isoform- and exon-specific read sequencing rate.

BMC Bioinformatics. 2015-10-16

[7]
RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome.

BMC Bioinformatics. 2011-8-4

[8]
Joint estimation of isoform expression and isoform-specific read distribution using multisample RNA-Seq data.

Bioinformatics. 2013-12-3

[9]
Hierarchical analysis of RNA-seq reads improves the accuracy of allele-specific expression.

Bioinformatics. 2018-7-1

[10]
A fuzzy method for RNA-Seq differential expression analysis in presence of multireads.

BMC Bioinformatics. 2016-11-8

引用本文的文献

[1]
Enhancing transcriptome expression quantification through accurate assignment of long RNA sequencing reads with TranSigner.

Genome Biol. 2025-8-28

[2]
RNA-viromics unveils diverse RNA viral communities in Large-billed crows and Northern Ravens.

Virus Genes. 2025-8-23

[3]
Integration of mRNA and miRNA Analysis Reveals the Regulation of Salt Stress Response in Rapeseed ( L.).

Plants (Basel). 2025-8-4

[4]
Integrative analysis of lung adenocarcinoma across diverse ethnicities and exposures.

Cancer Cell. 2025-7-30

[5]
Starship giant transposons dominate plastic genomic regions in a fungal plant pathogen and drive virulence evolution.

Nat Commun. 2025-7-24

[6]
Oarfish: enhanced probabilistic modeling leads to improved accuracy in long read transcriptome quantification.

Bioinformatics. 2025-7-1

[7]
Boolean Network Modeling Identifies Cognitive Resilience in the First Murine Model of Asymptomatic Alzheimer's Disease.

bioRxiv. 2025-6-13

[8]
Jasmonic acid-mediated cell wall biosynthesis pathway involved in pepper (Capsicum annuum) defense response to Ralstonia solanacearum.

BMC Plant Biol. 2025-7-2

[9]
Integrated Analysis of Differential Expression Profiles of miRNA and mRNA in Gonads of Provides New Insights into Sexually Biased Gene Expression.

Animals (Basel). 2025-5-27

[10]
Improving gene isoform quantification with miniQuant.

Nat Biotechnol. 2025-6-3

本文引用的文献

[1]
Ultrafast and memory-efficient alignment of short DNA sequences to the human genome.

Genome Biol. 2009

[2]
Statistical inferences for isoform expression in RNA-Seq.

Bioinformatics. 2009-4-15

[3]
RNA-Seq: a revolutionary tool for transcriptomics.

Nat Rev Genet. 2009-1

[4]
Cross-hybridization modeling on Affymetrix exon arrays.

Bioinformatics. 2008-12-15

[5]
Substantial biases in ultra-short read data sets from high-throughput DNA sequencing.

Nucleic Acids Res. 2008-9

[6]
Profiling the HeLa S3 transcriptome using randomly primed cDNA and massively parallel short-read sequencing.

Biotechniques. 2008-7

[7]
RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays.

Genome Res. 2008-9

[8]
Stem cell transcriptome profiling via massive-scale mRNA sequencing.

Nat Methods. 2008-7

[9]
Mapping and quantifying mammalian transcriptomes by RNA-Seq.

Nat Methods. 2008-7

[10]
The transcriptional landscape of the yeast genome defined by RNA sequencing.

Science. 2008-6-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索