Suppr超能文献

连续纺丝合成胶原纤维中的原纤维形成。

Fibrillogenesis in continuously spun synthetic collagen fiber.

机构信息

Department of Surgery, Emory University, Atlanta, Georgia 30332, USA.

出版信息

J Biomed Mater Res B Appl Biomater. 2010 Apr;93(1):24-38. doi: 10.1002/jbm.b.31555.

Abstract

The universal structural role of collagen fiber networks has motivated the development of collagen gels, films, coatings, injectables, and other formulations. However, reported synthetic collagen fiber fabrication schemes have either culminated in short, discontinuous fiber segments at unsuitably low production rates, or have incompletely replicated the internal fibrillar structure that dictates fiber mechanical and biological properties. We report a continuous extrusion system with an off-line phosphate buffer incubation step for the manufacture of synthetic collagen fiber. Fiber with a cross-section of 53+ or - 14 by 21 + or - 3 microm and an ultimate tensile strength of 94 + or - 19 MPa was continuously produced at 60 m/hr from an ultrafiltered monomeric collagen solution. The effect of collagen solution concentration, flow rate, and spinneret size on fiber size was investigated. The fiber was further characterized by microdifferential scanning calorimetry, transmission electron microscopy (TEM), second harmonic generation (SHG) analysis, and in a subcutaneous murine implant model. Calorimetry demonstrated stabilization of the collagen triple helical structure, while TEM and SHG revealed a dense, axially aligned D-periodic fibril structure throughout the fiber cross-section. Implantation of glutaraldehyde crosslinked and noncrosslinked fiber in the subcutaneous tissue of mice demonstrated limited inflammatory response and biodegradation after a 6-week implant period.

摘要

胶原纤维网络的普遍结构作用促使人们开发了胶原凝胶、薄膜、涂层、注射剂和其他制剂。然而,已报道的合成胶原纤维制造方案要么最终导致短的、不连续的纤维段,生产速率非常低,要么不完全复制决定纤维机械和生物学特性的内部原纤维结构。我们报告了一种连续挤出系统,该系统带有一个离线磷酸盐缓冲孵育步骤,用于制造合成胶原纤维。从超滤液化的单体胶原溶液中以 60 m/hr 的速度连续生产横截面为 53+/-14μm x 21+/-3μm、极限拉伸强度为 94+/-19MPa 的纤维。研究了胶原溶液浓度、流速和喷丝头尺寸对纤维尺寸的影响。通过微差示扫描量热法、透射电子显微镜 (TEM)、二次谐波产生 (SHG) 分析以及在皮下鼠植入模型中对纤维进行了进一步表征。量热法证明了胶原三螺旋结构的稳定,而 TEM 和 SHG 则揭示了整个纤维横截面中致密的、轴向排列的 D 周期原纤维结构。戊二醛交联和非交联纤维在小鼠皮下组织中的植入表明,在 6 周的植入期后,炎症反应和生物降解有限。

相似文献

1
Fibrillogenesis in continuously spun synthetic collagen fiber.
J Biomed Mater Res B Appl Biomater. 2010 Apr;93(1):24-38. doi: 10.1002/jbm.b.31555.
3
Wet spinning and riboflavin crosslinking of collagen type I/III filaments.
Biomed Mater. 2018 Nov 13;14(1):015007. doi: 10.1088/1748-605X/aaebda.
4
Effects of photochemical riboflavin-mediated crosslinks on the physical properties of collagen constructs and fibrils.
J Mater Sci Mater Med. 2014 Jan;25(1):11-21. doi: 10.1007/s10856-013-5038-7. Epub 2013 Sep 5.
5
A new class of bio-composite materials of unique collagen fibers.
J Mech Behav Biomed Mater. 2014 Aug;36:71-81. doi: 10.1016/j.jmbbm.2014.04.008. Epub 2014 Apr 18.
6
An evaluation of purified reconstituted type 1 collagen fibers.
J Biomed Mater Res. 1989 Sep;23(9):961-77. doi: 10.1002/jbm.820230902.
7
Collagen fibers constructed by gravity filament forming process.
Artif Cells Blood Substit Immobil Biotechnol. 2011 Oct;39(5):335-40. doi: 10.3109/10731199.2011.574634. Epub 2011 May 11.
8
9
Collagen fibrils in functionally distinct tendons have differing structural responses to tendon rupture and fatigue loading.
Acta Biomater. 2016 Sep 15;42:296-307. doi: 10.1016/j.actbio.2016.06.017. Epub 2016 Jun 14.

引用本文的文献

1
Restoring articular cartilage: insights from structure, composition and development.
Nat Rev Rheumatol. 2025 May;21(5):291-308. doi: 10.1038/s41584-025-01236-7. Epub 2025 Mar 28.
2
Magnetic Alignment of Collagen: Principles, Methods, Applications, and Fiber Alignment Analyses.
Tissue Eng Part B Rev. 2024 Aug;30(4):405-422. doi: 10.1089/ten.TEB.2023.0222. Epub 2024 Jan 16.
4
Hierarchically Assembled Type I Collagen Fibres as Biomimetic Building Blocks of Biomedical Membranes.
Membranes (Basel). 2021 Aug 12;11(8):620. doi: 10.3390/membranes11080620.
5
Continuous Formation of Ultrathin, Strong Collagen Sheets with Tunable Anisotropy and Compaction.
ACS Biomater Sci Eng. 2020 Jul 13;6(7):4236-4246. doi: 10.1021/acsbiomaterials.0c00321. Epub 2020 May 26.
6
Digital Design and Automated Fabrication of Bespoke Collagen Microfiber Scaffolds.
Tissue Eng Part C Methods. 2019 Nov;25(11):687-700. doi: 10.1089/ten.TEC.2018.0379. Epub 2019 Aug 14.
7
Challenges in Translating from Bench to Bed-Side: Pro-Angiogenic Peptides for Ischemia Treatment.
Molecules. 2019 Mar 28;24(7):1219. doi: 10.3390/molecules24071219.
8
Novel Self-Assembly-Induced Gelation for Nanofibrous Collagen/Hydroxyapatite Composite Microspheres.
Materials (Basel). 2017 Sep 21;10(10):1110. doi: 10.3390/ma10101110.
9
Templated Assembly of Collagen Fibers Directs Cell Growth in 2D and 3D.
Sci Rep. 2017 Aug 29;7(1):9628. doi: 10.1038/s41598-017-10182-8.

本文引用的文献

1
Thickness dependence of optical second harmonic generation in collagen fibrils.
Opt Express. 2007 Sep 17;15(19):12005-10. doi: 10.1364/oe.15.012005.
2
Collagen fibrillogenesis: fibronectin, integrins, and minor collagens as organizers and nucleators.
Curr Opin Cell Biol. 2008 Oct;20(5):495-501. doi: 10.1016/j.ceb.2008.06.008. Epub 2008 Jul 30.
3
Collagen fabrics as biomaterials.
Biotechnol Bioeng. 1994 Apr 5;43(8):781-91. doi: 10.1002/bit.260430813.
4
Post-self-assembly experimentation on extruded collagen fibres for tissue engineering applications.
Acta Biomater. 2008 Nov;4(6):1646-56. doi: 10.1016/j.actbio.2008.05.015. Epub 2008 Jun 11.
5
An electrochemical fabrication process for the assembly of anisotropically oriented collagen bundles.
Biomaterials. 2008 Aug;29(22):3278-88. doi: 10.1016/j.biomaterials.2008.04.028. Epub 2008 May 9.
7
Electro-spinning of pure collagen nano-fibres - just an expensive way to make gelatin?
Biomaterials. 2008 May;29(15):2293-305. doi: 10.1016/j.biomaterials.2008.02.009. Epub 2008 Mar 3.
9
D-periodic collagen-mimetic microfibers.
J Am Chem Soc. 2007 Nov 28;129(47):14780-7. doi: 10.1021/ja0758990. Epub 2007 Nov 7.
10
Nature designs tough collagen: explaining the nanostructure of collagen fibrils.
Proc Natl Acad Sci U S A. 2006 Aug 15;103(33):12285-90. doi: 10.1073/pnas.0603216103. Epub 2006 Aug 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验