Suppr超能文献

适应性和 maladaptive 心脏肥大中基因表达的时间扭曲比较 。(注:“maladaptive”直译为“适应不良的”,这里结合语境可能是指“不良适应性的”心脏肥大,但具体含义需结合更多背景知识确定)

Time-warped comparison of gene expression in adaptive and maladaptive cardiac hypertrophy.

作者信息

Sheehy Sean P, Huang Sui, Parker Kevin Kit

机构信息

Disease Biophysics Group, School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA 02138, USA.

出版信息

Circ Cardiovasc Genet. 2009 Apr;2(2):116-24. doi: 10.1161/CIRCGENETICS.108.806935. Epub 2009 Feb 18.

Abstract

BACKGROUND

Cardiac hypertrophy is classically regarded as a compensatory response, yet the active tissue remodeling processes triggered by various types of mechanical stress can enhance or diminish the function of the heart. Despite the disparity in outcomes, there are similarities in the hypertrophic responses. We hypothesized that a generic genetic response that is not dependent on the particular nature of the hypertrophic stimulus exists. To test our hypothesis, we compared the temporal evolution of transcriptomes measured in hearts subjected to either adaptive (exercise-induced) or maladaptive (aortic banding-induced) hypertrophy.

METHODS AND RESULTS

Generic hypertrophy-associated genes were identified and distinguished from stimulus-dependent transcripts by coupling a metric of cardiac growth with a dynamic time-warping algorithm to align transcriptome changes with respect to the hypertrophy response. The major differences in expression between the adaptive and maladaptive hypertrophy models were centered around the genes involved in metabolism, fibrosis, and immune response. Conversely, transcripts with common expression patterns in both hypertrophy models were associated with signal transduction, cytoskeletal development, and muscle contraction. Thus, despite the apparent differences in the expression response of the heart to either athletic conditioning or pressure overload, there is a set of genes that displays similar expression profiles.

CONCLUSIONS

This finding lends support to the notion of a generalized cardiac growth mechanism that is activated in response to mechanical perturbation. The common and unique genetic signatures of adaptive and maladaptive hypertrophy may be useful in the diagnosis and treatment of pathological myocardial remodeling.

摘要

背景

心脏肥大传统上被视为一种代偿反应,然而,由各种类型的机械应力触发的活跃组织重塑过程可增强或削弱心脏功能。尽管结果存在差异,但肥大反应存在相似之处。我们假设存在一种不依赖于肥大刺激的特定性质的通用遗传反应。为了验证我们的假设,我们比较了在经历适应性(运动诱导)或适应性不良(主动脉缩窄诱导)肥大的心脏中测量的转录组的时间演变。

方法和结果

通过将心脏生长指标与动态时间规整算法相结合,以对齐转录组变化与肥大反应,从而识别出通用的肥大相关基因,并将其与刺激依赖性转录本区分开来。适应性和适应性不良肥大模型之间表达的主要差异集中在参与代谢、纤维化和免疫反应的基因上。相反,在两种肥大模型中具有共同表达模式的转录本与信号转导、细胞骨架发育和肌肉收缩相关。因此,尽管心脏对运动调节或压力过载的表达反应存在明显差异,但仍有一组基因显示出相似的表达谱。

结论

这一发现支持了一种广义心脏生长机制的概念,该机制在机械扰动时被激活。适应性和适应性不良肥大的共同和独特基因特征可能有助于病理性心肌重塑的诊断和治疗。

相似文献

1
Time-warped comparison of gene expression in adaptive and maladaptive cardiac hypertrophy.
Circ Cardiovasc Genet. 2009 Apr;2(2):116-24. doi: 10.1161/CIRCGENETICS.108.806935. Epub 2009 Feb 18.
2
3
Glucose transporter 4-deficient hearts develop maladaptive hypertrophy in response to physiological or pathological stresses.
Am J Physiol Heart Circ Physiol. 2017 Dec 1;313(6):H1098-H1108. doi: 10.1152/ajpheart.00101.2017. Epub 2017 Aug 19.
4
Calcineurin/NFAT coupling participates in pathological, but not physiological, cardiac hypertrophy.
Circ Res. 2004 Jan 9;94(1):110-8. doi: 10.1161/01.RES.0000109415.17511.18. Epub 2003 Dec 1.
7
Targeted disruption of Hspa4 gene leads to cardiac hypertrophy and fibrosis.
J Mol Cell Cardiol. 2012 Oct;53(4):459-68. doi: 10.1016/j.yjmcc.2012.07.014. Epub 2012 Aug 1.
8
Enhancement of mitochondrial calcium uptake is cardioprotective against maladaptive hypertrophy by retrograde signaling uptuning Akt.
Proc Natl Acad Sci U S A. 2025 Mar 18;122(11):e2402639122. doi: 10.1073/pnas.2402639122. Epub 2025 Mar 11.
9
Decompensation of pressure-overload hypertrophy in G alpha q-overexpressing mice.
Circulation. 1998 Apr 21;97(15):1488-95. doi: 10.1161/01.cir.97.15.1488.

引用本文的文献

3
PRMT7 ablation in cardiomyocytes causes cardiac hypertrophy and fibrosis through β-catenin dysregulation.
Cell Mol Life Sci. 2022 Jan 28;79(2):99. doi: 10.1007/s00018-021-04097-x.
4
Fetal Gene Reactivation in Pulmonary Arterial Hypertension: GOOD, BAD, or BOTH?
Cells. 2021 Jun 11;10(6):1473. doi: 10.3390/cells10061473.
5
Supplemental 25-hydroxycholecalciferol Alleviates Inflammation and Cardiac Fibrosis in Hens.
Int J Mol Sci. 2020 Nov 8;21(21):8379. doi: 10.3390/ijms21218379.
6
Fattening chips: hypertrophy, feeding, and fasting of human white adipocytes .
Lab Chip. 2020 Nov 10;20(22):4152-4165. doi: 10.1039/d0lc00508h.
7
Three TF Co-expression Modules Regulate Pressure-Overload Cardiac Hypertrophy in Male Mice.
Sci Rep. 2017 Aug 8;7(1):7560. doi: 10.1038/s41598-017-07981-4.
8
Biomarkers in cardiovascular disease: Statistical assessment and section on key novel heart failure biomarkers.
Trends Cardiovasc Med. 2017 Feb;27(2):123-133. doi: 10.1016/j.tcm.2016.07.005. Epub 2016 Jul 28.
9
Angiotensin II Induced Cardiac Dysfunction on a Chip.
PLoS One. 2016 Jan 25;11(1):e0146415. doi: 10.1371/journal.pone.0146415. eCollection 2016.
10
Fibrous scaffolds for building hearts and heart parts.
Adv Drug Deliv Rev. 2016 Jan 15;96:83-102. doi: 10.1016/j.addr.2015.11.020. Epub 2015 Dec 4.

本文引用的文献

1
Identification of a core set of genes that signifies pathways underlying cardiac hypertrophy.
Comp Funct Genomics. 2004;5(6-7):459-70. doi: 10.1002/cfg.428.
2
Physiological genomics of cardiac disease: quantitative relationships between gene expression and left ventricular hypertrophy.
Physiol Genomics. 2006 Oct 3;27(1):86-94. doi: 10.1152/physiolgenomics.00028.2006. Epub 2006 Jul 11.
3
Early and transient gene expression changes in pressure overload-induced cardiac hypertrophy in mice.
Genomics. 2006 Oct;88(4):480-8. doi: 10.1016/j.ygeno.2006.04.012. Epub 2006 Jun 15.
4
Cardiac biomarkers: a contemporary status report.
Nat Clin Pract Cardiovasc Med. 2006 Jan;3(1):24-34. doi: 10.1038/ncpcardio0405.
6
Genetic expression profiles during physiological and pathological cardiac hypertrophy and heart failure in rats.
Physiol Genomics. 2005 Mar 21;21(1):34-42. doi: 10.1152/physiolgenomics.00226.2004. Epub 2004 Dec 28.
7
The biochemical response of the heart to hypertension and exercise.
Trends Biochem Sci. 2004 Nov;29(11):609-17. doi: 10.1016/j.tibs.2004.09.002.
8
Microarray analysis of gene expression after transverse aortic constriction in mice.
Physiol Genomics. 2004 Sep 16;19(1):93-105. doi: 10.1152/physiolgenomics.00040.2004. Epub 2004 Aug 3.
9
Adaptive and maladaptive hypertrophic pathways: points of convergence and divergence.
Cardiovasc Res. 2004 Aug 15;63(3):373-80. doi: 10.1016/j.cardiores.2004.04.031.
10
Analyzing time series gene expression data.
Bioinformatics. 2004 Nov 1;20(16):2493-503. doi: 10.1093/bioinformatics/bth283. Epub 2004 May 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验