Suppr超能文献

急性心肌梗死再入院的统计模型和患者预测因素:一项系统综述。

Statistical models and patient predictors of readmission for acute myocardial infarction: a systematic review.

作者信息

Desai Mayur M, Stauffer Brett D, Feringa Harm H H, Schreiner Geoffrey C

机构信息

Division of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT 06520-8034, USA.

出版信息

Circ Cardiovasc Qual Outcomes. 2009 Sep;2(5):500-7. doi: 10.1161/CIRCOUTCOMES.108.832949.

Abstract

BACKGROUND

Readmission after acute myocardial infarction (AMI) has been targeted for public reporting because it is a common, costly, and often preventable outcome. To assist in ongoing efforts to risk-stratify patients and profile hospitals through public reporting of performance measures, we conducted a systematic review to identify models designed to compare hospital rates of readmission or predict patients' risk of readmission after AMI and to identify studies evaluating patient characteristics associated with AMI readmission.

METHODS AND RESULTS

We identified relevant English-language studies published between 1950 and 2007 by searching MEDLINE, Scopus, PsycINFO, and all 4 Ovid Evidence-Based Medicine Reviews. Eligible publications reported on readmission up to 1 year after AMI hospitalization among adults. From 751 potentially relevant articles, 35 met our predefined inclusion/exclusion criteria. Overall, none developed models to compare readmission rates among hospitals or models to predict patients' risk of readmission. All 35 examined patient characteristics associated with AMI readmission. However, studies varied in methods for case and outcome identification, used multiple types of data sources, examined differing outcomes (often either readmission alone or a composite outcome of readmission or death) over varying follow-up periods (from 30 days to 1 year), and found few patient characteristics consistently associated with readmission.

CONCLUSIONS

Patient characteristics may be important predictors of AMI readmission; however, few variables were consistently identified. Thus, clinically, patient risk stratification is challenging. From a policy perspective, a validated risk-standardized model to profile hospitals using AMI readmission rates is currently unavailable in the literature.

摘要

背景

急性心肌梗死(AMI)后的再入院一直是公开报告的目标,因为这是一种常见、代价高昂且通常可预防的结果。为了通过公开报告绩效指标来协助持续开展的对患者进行风险分层和对医院进行评估的工作,我们进行了一项系统评价,以识别旨在比较医院AMI后再入院率或预测患者再入院风险的模型,并识别评估与AMI再入院相关的患者特征的研究。

方法与结果

我们通过检索MEDLINE、Scopus、PsycINFO以及所有4种Ovid循证医学综述,确定了1950年至2007年间发表的相关英文研究。符合条件的出版物报告了成人AMI住院后长达1年的再入院情况。从751篇可能相关的文章中,35篇符合我们预先定义的纳入/排除标准。总体而言,没有研究开发出比较医院再入院率的模型或预测患者再入院风险的模型。所有35项研究都考察了与AMI再入院相关的患者特征。然而,这些研究在病例和结局识别方法上各不相同,使用了多种类型的数据源,在不同的随访期(从30天到1年)考察了不同的结局(通常要么仅为再入院,要么是再入院或死亡的综合结局),并且发现很少有患者特征始终与再入院相关。

结论

患者特征可能是AMI再入院的重要预测因素;然而,一致确定的变量很少。因此,在临床上,对患者进行风险分层具有挑战性。从政策角度来看,目前文献中尚无经过验证的、使用AMI再入院率对医院进行评估的风险标准化模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验