The Wellcome Trust Centre for Neuroimaging, University College London, UK.
Neuroimage. 2010 Sep;52(3):752-65. doi: 10.1016/j.neuroimage.2009.12.068. Epub 2009 Dec 28.
This article reviews the substantial impact computational neuroscience has had on neuroimaging over the past years. It builds on the distinction between models of the brain as a computational machine and computational models of neuronal dynamics per se; i.e., models of brain function and biophysics. Both sorts of model borrow heavily from computational neuroscience, and both have enriched the analysis of neuroimaging data and the type of questions we address. To illustrate the role of functional models in imaging neuroscience, we focus on optimal control and decision (game) theory; the models used here provide a mechanistic account of neuronal computations and the latent (mental) states represent by the brain. In terms of biophysical modelling, we focus on dynamic causal modelling, with a special emphasis on recent advances in neural-mass models for hemodynamic and electrophysiological time series. Each example emphasises the role of generative models, which embed our hypotheses or questions, and the importance of model comparison (i.e., hypothesis testing). We will refer to this theme, when trying to contextualise recent trends in relation to each other.
本文回顾了计算神经科学在过去几年中对神经影像学产生的重大影响。它建立在将大脑作为计算机器的模型与神经元动力学本身的计算模型之间的区别之上;即,大脑功能和生物物理学的模型。这两种类型的模型都大量借鉴了计算神经科学,并且都丰富了神经影像学数据的分析以及我们所解决的问题的类型。为了说明功能模型在成像神经科学中的作用,我们重点介绍最优控制和决策(博弈)理论;这里使用的模型为神经元计算提供了一种机械解释,而大脑所代表的潜在(心理)状态。就生物物理建模而言,我们重点介绍动态因果建模,特别强调神经群体模型在血流动力学和电生理时间序列方面的最新进展。每个示例都强调了生成模型的作用,生成模型嵌入了我们的假设或问题,以及模型比较(即假设检验)的重要性。在尝试相互关联地将最近的趋势置于上下文中时,我们将参考这一主题。