Suppr超能文献

颗粒长度依赖性二氧化钛纳米材料的毒性和生物活性。

Particle length-dependent titanium dioxide nanomaterials toxicity and bioactivity.

机构信息

Center for Environmental Health Sciences, University of Montana, Missoula MT, USA.

出版信息

Part Fibre Toxicol. 2009 Dec 31;6:35. doi: 10.1186/1743-8977-6-35.

Abstract

BACKGROUND

Titanium dioxide (TiO(2)) nanomaterials have considerable beneficial uses as photocatalysts and solar cells. It has been established for many years that pigment-grade TiO(2 )(200 nm sphere) is relatively inert when internalized into a biological model system (in vivo or in vitro). For this reason, TiO(2 )nanomaterials are considered an attractive alternative in applications where biological exposures will occur. Unfortunately, metal oxides on the nanoscale (one dimension < 100 nm) may or may not exhibit the same toxic potential as the original material. A further complicating issue is the effect of modifying or engineering of the nanomaterial to be structurally and geometrically different from the original material.

RESULTS

TiO(2 )nanospheres, short (< 5 mum) and long (> 15 mum) nanobelts were synthesized, characterized and tested for biological activity using primary murine alveolar macrophages and in vivo in mice. This study demonstrates that alteration of anatase TiO(2 )nanomaterial into a fibre structure of greater than 15 mum creates a highly toxic particle and initiates an inflammatory response by alveolar macrophages. These fibre-shaped nanomaterials induced inflammasome activation and release of inflammatory cytokines through a cathepsin B-mediated mechanism. Consequently, long TiO(2 )nanobelts interact with lung macrophages in a manner very similar to asbestos or silica.

CONCLUSIONS

These observations suggest that any modification of a nanomaterial, resulting in a wire, fibre, belt or tube, be tested for pathogenic potential. As this study demonstrates, toxicity and pathogenic potential change dramatically as the shape of the material is altered into one that a phagocytic cell has difficulty processing, resulting in lysosomal disruption.

摘要

背景

二氧化钛 (TiO(2)) 纳米材料作为光催化剂和太阳能电池具有相当大的有益用途。多年来,人们已经确定,当内化为生物模型系统(体内或体外)时,颜料级 TiO(2)(200nm 球体) 相对惰性。出于这个原因,TiO(2)纳米材料被认为是在会发生生物暴露的应用中极具吸引力的替代品。不幸的是,纳米尺度的金属氧化物(一维 < 100nm)可能表现出与原始材料相同的毒性潜力,也可能不表现出相同的毒性潜力。一个更复杂的问题是纳米材料的改性或工程设计使其在结构和几何形状上与原始材料不同。

结果

合成、表征并测试了 TiO(2)纳米球、短(< 5µm)和长(> 15µm)纳米带的生物活性,使用原代鼠肺泡巨噬细胞和体内小鼠进行了测试。这项研究表明,将锐钛矿 TiO(2)纳米材料改变为大于 15µm 的纤维结构会产生高度毒性的颗粒,并通过肺泡巨噬细胞引发炎症反应。这些纤维状纳米材料通过组织蛋白酶 B 介导的机制诱导炎症小体激活和炎症细胞因子的释放。因此,长 TiO(2)纳米带与肺巨噬细胞相互作用的方式与石棉或二氧化硅非常相似。

结论

这些观察结果表明,任何导致纳米材料变成线、纤维、带或管的改性都应测试其致病潜力。正如本研究所示,毒性和致病潜力会随着材料形状的改变而急剧变化,变得难以被吞噬细胞处理,从而导致溶酶体破裂。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c053/2806338/423a9030ed20/1743-8977-6-35-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验