Suppr超能文献

基于植物提取物衍生银纳米粒子物理特性的机器学习模型细胞毒性研究的荟萃分析。

Meta-Analysis of Cytotoxicity Studies Using Machine Learning Models on Physical Properties of Plant Extract-Derived Silver Nanoparticles.

机构信息

Department of Applied Science, Symbiosis Institute of Technology, Symbiosis International (Deemed) University, Pune 412115, India.

Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates.

出版信息

Int J Mol Sci. 2023 Feb 20;24(4):4220. doi: 10.3390/ijms24044220.

Abstract

Silver nanoparticles (Ag-NPs) demonstrate unique properties and their use is exponentially increasing in various applications. The potential impact of Ag-NPs on human health is debatable in terms of toxicity. The present study deals with MTT(3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-tetrazolium-bromide) assay on Ag-NPs. We measured the cell activity resulting from molecules' mitochondrial cleavage through a spectrophotometer. The machine learning models Decision Tree (DT) and Random Forest (RF) were utilized to comprehend the relationship between the physical parameters of NPs and their cytotoxicity. The input features used for the machine learning were reducing agent, types of cell lines, exposure time, particle size, hydrodynamic diameter, zeta potential, wavelength, concentration, and cell viability. These parameters were extracted from the literature, segregated, and developed into a dataset in terms of cell viability and concentration of NPs. DT helped in classifying the parameters by applying threshold conditions. The same conditions were applied to RF to extort the predictions. K-means clustering was used on the dataset for comparison. The performance of the models was evaluated through regression metrics, viz. root mean square error (RMSE) and R. The obtained high value of R and low value of RMSE denote an accurate prediction that could best fit the dataset. DT performed better than RF in predicting the toxicity parameter. We suggest using algorithms for optimizing and designing the synthesis of Ag-NPs in extended applications such as drug delivery and cancer treatments.

摘要

银纳米粒子(Ag-NPs)具有独特的性质,其在各种应用中的使用呈指数级增长。Ag-NPs 对人类健康的潜在影响在毒性方面存在争议。本研究涉及 MTT(3-(4,5-二甲基噻唑-2-基)-2,5-二苯基四氮唑溴盐)法测定 Ag-NPs。我们通过分光光度计测量了分子线粒体断裂产生的细胞活性。决策树(DT)和随机森林(RF)机器学习模型被用于理解 NPs 的物理参数与其细胞毒性之间的关系。用于机器学习的输入特征是还原剂、细胞系类型、暴露时间、粒径、水动力直径、zeta 电位、波长、浓度和细胞活力。这些参数是从文献中提取、分离并根据细胞活力和 NPs 浓度开发成数据集的。DT 通过应用阈值条件帮助对参数进行分类。相同的条件被应用于 RF 以提取预测。K-均值聚类被用于数据集的比较。通过回归指标,即均方根误差(RMSE)和 R,评估模型的性能。获得的高 R 值和低 RMSE 值表示可以最佳拟合数据集的准确预测。DT 在预测毒性参数方面的表现优于 RF。我们建议在药物输送和癌症治疗等扩展应用中使用算法来优化和设计 Ag-NPs 的合成。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d34/9966579/8f855aee518d/ijms-24-04220-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验