Suppr超能文献

使用纳米过滤器的分子筛:过去、现在与未来。

Molecular sieving using nanofilters: past, present and future.

作者信息

Han Jongyoon, Fu Jianping, Schoch Reto B

机构信息

Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 36-841, 77 Mass Ave., Cambridge, MA 02139, USA.

出版信息

Lab Chip. 2008 Jan;8(1):23-33. doi: 10.1039/b714128a. Epub 2007 Nov 26.

Abstract

Filtration of molecules by nanometer-sized structures is ubiquitous in our everyday life, but our understanding of such molecular filtration processes is far less than desired. Until recently, one of the main reasons was the lack of experimental methods that can help provide detailed, microscopic pictures of molecule-nanostructure interactions. Several innovations in experimental methods, such as nuclear track-etched membranes developed in the 70s, and more recent development of nanofluidic molecular filters, played pivotal roles in advancing our understanding. With the ability to make truly molecular-scale filters and pores with well-defined sizes, shapes, and surface properties, now we are well positioned to engineer better functionality in molecular sieving, separation and other membrane applications. Reviewing past theoretical developments (often scattered across different fields) and connecting them to the most recent advances in the field would be essential to get a full, unified view on this important engineering question.

摘要

纳米级结构对分子的过滤在我们的日常生活中无处不在,但我们对这种分子过滤过程的理解却远不尽如人意。直到最近,主要原因之一是缺乏能够帮助提供分子与纳米结构相互作用详细微观图像的实验方法。实验方法的一些创新,如70年代开发的核径迹蚀刻膜以及纳米流体分子过滤器的最新发展,在推动我们的理解方面发挥了关键作用。有了制造具有明确尺寸、形状和表面特性的真正分子级过滤器和孔隙的能力,现在我们有能力在分子筛分、分离及其他膜应用中设计出更好的功能。回顾过去的理论发展(往往分散在不同领域)并将它们与该领域的最新进展联系起来,对于全面、统一地看待这个重要的工程问题至关重要。

相似文献

1
Molecular sieving using nanofilters: past, present and future.
Lab Chip. 2008 Jan;8(1):23-33. doi: 10.1039/b714128a. Epub 2007 Nov 26.
3
Artificial molecular sieves and filters: a new paradigm for biomolecule separation.
Trends Biotechnol. 2008 Jun;26(6):311-20. doi: 10.1016/j.tibtech.2008.02.009. Epub 2008 Apr 20.
4
Analytical description of Ogston-regime biomolecule separation using nanofilters and nanopores.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Oct;80(4 Pt 1):041911. doi: 10.1103/PhysRevE.80.041911. Epub 2009 Oct 8.
5
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
6
Recent advances in single-molecule detection on micro- and nano-fluidic devices.
Electrophoresis. 2011 Nov;32(23):3308-18. doi: 10.1002/elps.201100159.
7
Development of isoporous microslit silicon nitride membranes for sterile filtration applications.
Biotechnol Bioeng. 2020 Mar;117(3):879-885. doi: 10.1002/bit.27240. Epub 2019 Dec 18.
8
Electrokinetic concentration of DNA polymers in nanofluidic channels.
Nano Lett. 2010 Mar 10;10(3):765-72. doi: 10.1021/nl902228p.
9
Biopolymer filtration in corrugated nanochannels.
Phys Rev Lett. 2014 Mar 21;112(11):118301. doi: 10.1103/PhysRevLett.112.118301. Epub 2014 Mar 17.
10
Million-fold preconcentration of proteins and peptides by nanofluidic filter.
Anal Chem. 2005 Jul 15;77(14):4293-9. doi: 10.1021/ac050321z.

引用本文的文献

2
Oxygen transport in nanoporous SiN membrane compared to PDMS and polypropylene for microfluidic ECMO.
Biomed Microdevices. 2025 May 28;27(2):22. doi: 10.1007/s10544-025-00750-5.
3
Oxygen Transport in Nanoporous SiN Membrane Compared to PDMS and Polypropylene for Microfluidic ECMO.
bioRxiv. 2025 Jan 5:2025.01.04.631337. doi: 10.1101/2025.01.04.631337.
4
A Critical Review on the Sensing, Control, and Manipulation of Single Molecules on Optofluidic Devices.
Micromachines (Basel). 2022 Jun 18;13(6):968. doi: 10.3390/mi13060968.
5
Intrusion of polyethylene glycol into solid-state nanopores.
RSC Adv. 2018 Mar 1;8(17):9070-9073. doi: 10.1039/c8ra00329g. eCollection 2018 Feb 28.
6
Artificial sodium-selective ionic device based on crown-ether crystals with subnanometer pores.
Nat Commun. 2021 Sep 1;12(1):5231. doi: 10.1038/s41467-021-25597-1.
7
Comparison of separation modes for microchip electrophoresis of proteins.
J Sep Sci. 2021 Feb;44(3):744-751. doi: 10.1002/jssc.202000883. Epub 2020 Dec 13.
8
Electrokinetic stacking of particle zones in confined channels enabling their UV absorbance detection on microchips.
Anal Chim Acta. 2020 Oct 23;1135:83-90. doi: 10.1016/j.aca.2020.08.019. Epub 2020 Aug 22.
9
Direct electrophoretic microRNA preparation from clinical samples using nanofilter membrane.
Nano Converg. 2020 Jan 13;7(1):1. doi: 10.1186/s40580-019-0212-3.
10
Slot Self-Allocation Based MAC Protocol for Energy Harvesting Nano-Networks.
Sensors (Basel). 2019 Oct 25;19(21):4646. doi: 10.3390/s19214646.

本文引用的文献

1
STATISTICAL EVALUATION OF SIEVE CONSTANTS IN ULTRAFILTRATION.
J Gen Physiol. 1936 Sep 20;20(1):95-104. doi: 10.1085/jgp.20.1.95.
2
A Nanofilter Array Chip for Fast Gel-Free Biomolecule Separation.
Appl Phys Lett. 2005 Dec 26;87(26):263902. doi: 10.1063/1.2149979.
4
Nanofluidics: a fork in the nano-road.
Nat Nanotechnol. 2007 Feb;2(2):79-80. doi: 10.1038/nnano.2007.18.
5
Nanomaterials: a membrane-based synthetic approach.
Science. 1994 Dec 23;266(5193):1961-6. doi: 10.1126/science.266.5193.1961.
6
Metal nanotubule membranes with electrochemically switchable ion-transport selectivity.
Science. 1995 May 5;268(5211):700-2. doi: 10.1126/science.268.5211.700.
7
Hindered diffusion in microporous membranes with known pore geometry.
Science. 1970 Dec 18;170(3964):1302-5. doi: 10.1126/science.170.3964.1302.
8
Concentration polarization and nonlinear electrokinetic flow near a nanofluidic channel.
Phys Rev Lett. 2007 Jul 27;99(4):044501. doi: 10.1103/PhysRevLett.99.044501. Epub 2007 Jul 25.
9
Nonequilibrium transport of rigid macromolecules in periodically constricted geometries.
Phys Rev Lett. 2007 Mar 2;98(9):098106. doi: 10.1103/PhysRevLett.98.098106. Epub 2007 Mar 1.
10
Self-assembled colloidal arrays as three-dimensional nanofluidic sieves for separation of biomolecules on microchips.
Anal Chem. 2007 Mar 15;79(6):2289-95. doi: 10.1021/ac061931h. Epub 2007 Feb 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验