Suppr超能文献

基于图论的静息态 fMRI 数据中脑功能亚区划分。

Graph-theory based parcellation of functional subunits in the brain from resting-state fMRI data.

机构信息

Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA.

出版信息

Neuroimage. 2010 Apr 15;50(3):1027-35. doi: 10.1016/j.neuroimage.2009.12.119. Epub 2010 Jan 7.

Abstract

Resting-state fMRI provides a method to examine the functional network of the brain under spontaneous fluctuations. A number of studies have proposed using resting-state BOLD data to parcellate the brain into functional subunits. In this work, we present two state-of-the-art graph-based partitioning approaches, and investigate their application to the problem of brain network segmentation using resting-state fMRI. The two approaches, the normalized cut (Ncut) and the modularity detection algorithm, are also compared to the Gaussian mixture model (GMM) approach. We show that the Ncut approach performs consistently better than the modularity detection approach, and it also outperforms the GMM approach for in vivo fMRI data. Resting-state fMRI data were acquired from 43 healthy subjects, and the Ncut algorithm was used to parcellate several different cortical regions of interest. The group-wise delineation of the functional subunits based on resting-state fMRI was highly consistent with the parcellation results from two task-based fMRI studies (one with 18 subjects and the other with 20 subjects). The findings suggest that whole-brain parcellation of the cortex using resting-state fMRI is feasible, and that the Ncut algorithm provides the appropriate technique for this task.

摘要

静息态 fMRI 提供了一种方法,可在自发波动下检查大脑的功能网络。许多研究提出使用静息态 BOLD 数据将大脑分割成功能子单元。在这项工作中,我们提出了两种最先进的基于图的分区方法,并研究了它们在使用静息态 fMRI 分割大脑网络中的应用。这两种方法,归一化切割(Ncut)和模块性检测算法,也与高斯混合模型(GMM)方法进行了比较。我们表明,Ncut 方法的性能始终优于模块性检测方法,并且它也优于用于体内 fMRI 数据的 GMM 方法。从 43 名健康受试者中采集了静息态 fMRI 数据,并使用 Ncut 算法对几个不同的皮质感兴趣区域进行了分区。基于静息态 fMRI 的功能子单元的组间描绘与来自两项基于任务的 fMRI 研究的分割结果高度一致(一项研究有 18 名受试者,另一项研究有 20 名受试者)。这些发现表明,使用静息态 fMRI 对大脑皮层进行全脑分区是可行的,并且 Ncut 算法为这项任务提供了适当的技术。

相似文献

引用本文的文献

3
Spatio-functional parcellation of resting state fMRI.静息态功能磁共振成像的空间功能分区
Proc IEEE Southwest Symp Image Anal Interpret. 2024 Mar;2024:1-4. doi: 10.1109/ssiai59505.2024.10508652. Epub 2024 Apr 29.
6
An end-to-end infant brain parcellation pipeline.一个端到端的婴儿脑部分割流程。
Intell Med. 2024 May;4(2):65-74. doi: 10.1016/j.imed.2023.05.002. Epub 2023 May 14.

本文引用的文献

1
Functional connectivity and alterations in baseline brain state in humans.人类的功能连接和基线大脑状态的改变。
Neuroimage. 2010 Jan 1;49(1):823-34. doi: 10.1016/j.neuroimage.2009.07.028. Epub 2009 Jul 22.
2
Correspondence of the brain's functional architecture during activation and rest.大脑在激活和静息状态下功能结构的对应关系。
Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13040-5. doi: 10.1073/pnas.0905267106. Epub 2009 Jul 20.
6
Community structure and modularity in networks of correlated brain activity.相关脑活动网络中的社区结构与模块化
Magn Reson Imaging. 2008 Sep;26(7):914-20. doi: 10.1016/j.mri.2008.01.048. Epub 2008 May 13.
10
Identification and classification of hubs in brain networks.脑网络中枢纽的识别与分类。
PLoS One. 2007 Oct 17;2(10):e1049. doi: 10.1371/journal.pone.0001049.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验