Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, USA.
J Comput Chem. 2010 Jun;31(8):1689-98. doi: 10.1002/jcc.21456.
CPU time and memory usage are two vital issues that any numerical solvers for the Poisson-Boltzmann equation have to face in biomolecular applications. In this study, we systematically analyzed the CPU time and memory usage of five commonly used finite-difference solvers with a large and diversified set of biomolecular structures. Our comparative analysis shows that modified incomplete Cholesky conjugate gradient and geometric multigrid are the most efficient in the diversified test set. For the two efficient solvers, our test shows that their CPU times increase approximately linearly with the numbers of grids. Their CPU times also increase almost linearly with the negative logarithm of the convergence criterion at very similar rate. Our comparison further shows that geometric multigrid performs better in the large set of tested biomolecules. However, modified incomplete Cholesky conjugate gradient is superior to geometric multigrid in molecular dynamics simulations of tested molecules. We also investigated other significant components in numerical solutions of the Poisson-Boltzmann equation. It turns out that the time-limiting step is the free boundary condition setup for the linear systems for the selected proteins if the electrostatic focusing is not used. Thus, development of future numerical solvers for the Poisson-Boltzmann equation should balance all aspects of the numerical procedures in realistic biomolecular applications.
CPU 时间和内存使用量是任何用于生物分子应用的泊松-玻尔兹曼方程数值求解器都必须面对的两个重要问题。在这项研究中,我们系统地分析了五种常用有限差分求解器在大量多样化的生物分子结构中的 CPU 时间和内存使用情况。我们的比较分析表明,修正不完全乔利斯基共轭梯度和几何多重网格在多样化的测试集中效率最高。对于这两个高效求解器,我们的测试表明,它们的 CPU 时间随网格数量的增加大致呈线性增加。它们的 CPU 时间也几乎以相同的速率随收敛标准的负对数呈线性增加。我们的比较进一步表明,在测试的大量生物分子中,几何多重网格的性能更好。然而,在测试分子的分子动力学模拟中,修正不完全乔利斯基共轭梯度优于几何多重网格。我们还研究了泊松-玻尔兹曼方程数值解中的其他重要组成部分。结果表明,如果不使用静电聚焦,对于所选蛋白质的线性系统,时间限制步骤是自由边界条件设置。因此,未来泊松-玻尔兹曼方程数值求解器的开发应该在实际生物分子应用中平衡数值过程的各个方面。