Walther Guenther, Zimmerman Noah, Moore Wayne, Parks David, Meehan Stephen, Belitskaya Ilana, Pan Jinhui, Herzenberg Leonore
Department of Statistics, Stanford University, Stanford, CA 94305, USA.
Adv Bioinformatics. 2009;2009:686759. doi: 10.1155/2009/686759. Epub 2009 Nov 19.
The ability of flow cytometry to allow fast single cell interrogation of a large number of cells has made this technology ubiquitous and indispensable in the clinical and laboratory setting. A current limit to the potential of this technology is the lack of automated tools for analyzing the resulting data. We describe methodology and software to automatically identify cell populations in flow cytometry data. Our approach advances the paradigm of manually gating sequential two-dimensional projections of the data to a procedure that automatically produces gates based on statistical theory. Our approach is nonparametric and can reproduce nonconvex subpopulations that are known to occur in flow cytometry samples, but which cannot be produced with current parametric model-based approaches. We illustrate the methodology with a sample of mouse spleen and peritoneal cavity cells.
流式细胞术能够对大量细胞进行快速单细胞检测,这使得该技术在临床和实验室环境中无处不在且不可或缺。目前这项技术的一个潜在限制是缺乏用于分析所得数据的自动化工具。我们描述了用于自动识别流式细胞术数据中细胞群体的方法和软件。我们的方法将手动划分数据的连续二维投影的范式推进到基于统计理论自动生成门控的过程。我们的方法是非参数的,能够重现已知在流式细胞术样本中出现但当前基于参数模型的方法无法产生的非凸亚群。我们用小鼠脾脏和腹腔细胞样本说明了该方法。