Murphy R F
Cytometry. 1985 Jul;6(4):302-9. doi: 10.1002/cyto.990060405.
The application of K-means (ISODATA) cluster analysis to flow cytometric data is described. The results of analyses of flow cytometric data for mixtures of fluorescent microspheres and samples of peripheral blood mononuclear cells are presented. A method for simultaneously displaying list mode data for any number of parameters, which had previously been applied to a continuous set of parameters such as multi-angle light scattering data, is used to present the results of cluster analysis on physically unrelated parameters; this method allows rapid evaluation of the success of subpopulation identification. The factors that influence automated identification of subpopulations are examined, and methods for determining optimal values for these factors are described.
本文描述了K均值(迭代自组织数据分析技术)聚类分析在流式细胞术数据中的应用。文中给出了荧光微球混合物及外周血单个核细胞样本的流式细胞术数据分析结果。一种用于同时显示任意数量参数列表模式数据的方法(该方法先前已应用于连续参数集,如多角度光散射数据),被用于呈现对物理上不相关参数的聚类分析结果;此方法能够快速评估亚群识别的成功与否。文中研究了影响亚群自动识别的因素,并描述了确定这些因素最佳值的方法。