Suppr超能文献

使用聚类分析自动识别流式细胞仪列表模式数据中的亚群。

Automated identification of subpopulations in flow cytometric list mode data using cluster analysis.

作者信息

Murphy R F

出版信息

Cytometry. 1985 Jul;6(4):302-9. doi: 10.1002/cyto.990060405.

Abstract

The application of K-means (ISODATA) cluster analysis to flow cytometric data is described. The results of analyses of flow cytometric data for mixtures of fluorescent microspheres and samples of peripheral blood mononuclear cells are presented. A method for simultaneously displaying list mode data for any number of parameters, which had previously been applied to a continuous set of parameters such as multi-angle light scattering data, is used to present the results of cluster analysis on physically unrelated parameters; this method allows rapid evaluation of the success of subpopulation identification. The factors that influence automated identification of subpopulations are examined, and methods for determining optimal values for these factors are described.

摘要

本文描述了K均值(迭代自组织数据分析技术)聚类分析在流式细胞术数据中的应用。文中给出了荧光微球混合物及外周血单个核细胞样本的流式细胞术数据分析结果。一种用于同时显示任意数量参数列表模式数据的方法(该方法先前已应用于连续参数集,如多角度光散射数据),被用于呈现对物理上不相关参数的聚类分析结果;此方法能够快速评估亚群识别的成功与否。文中研究了影响亚群自动识别的因素,并描述了确定这些因素最佳值的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验