Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, USA; Department of Biochemistry, Saint Louis University School of Medicine, St Louis, Missouri, USA.
Department of Chemistry, Princeton University, Princeton, New Jersey, USA.
J Biol Chem. 2021 Jan-Jun;296:100107. doi: 10.1074/jbc.RA120.016278. Epub 2020 Dec 3.
A key step in bacteriochlorophyll biosynthesis is the reduction of protochlorophyllide to chlorophyllide, catalyzed by dark-operative protochlorophyllide oxidoreductase. Dark-operative protochlorophyllide oxidoreductase contains two [4Fe-4S]-containing component proteins (BchL and BchNB) that assemble upon ATP binding to BchL to coordinate electron transfer and protochlorophyllide reduction. But the precise nature of the ATP-induced conformational changes is poorly understood. We present a crystal structure of BchL in the nucleotide-free form where a conserved, flexible region in the N-terminus masks the [4Fe-4S] cluster at the docking interface between BchL and BchNB. Amino acid substitutions in this region produce a hyperactive enzyme complex, suggesting a role for the N-terminus in autoinhibition. Hydrogen-deuterium exchange mass spectrometry shows that ATP binding to BchL produces specific conformational changes leading to release of the flexible N-terminus from the docking interface. The release also promotes changes within the local environment surrounding the [4Fe-4S] cluster and promotes BchL-complex formation with BchNB. A key patch of amino acids, Asp-Phe-Asp (the 'DFD patch'), situated at the mouth of the BchL ATP-binding pocket promotes intersubunit cross stabilization of the two subunits. A linked BchL dimer with one defective ATP-binding site does not support protochlorophyllide reduction, illustrating nucleotide binding to both subunits as a prerequisite for the intersubunit cross stabilization. The masking of the [4Fe-4S] cluster by the flexible N-terminal region and the associated inhibition of the activity is a novel mechanism of regulation in metalloproteins. Such mechanisms are possibly an adaptation to the anaerobic nature of eubacterial cells with poor tolerance for oxygen.
细菌叶绿素生物合成的关键步骤是原叶绿素ide 的还原为叶绿素ide,由暗操作原叶绿素ide 氧化还原酶催化。暗操作原叶绿素ide 氧化还原酶包含两个[4Fe-4S] 结合的成分蛋白(BchL 和 BchNB),它们在 ATP 结合到 BchL 后组装,以协调电子转移和原叶绿素ide 的还原。但是,ATP 诱导的构象变化的确切性质还不清楚。我们呈现了无核苷酸形式的 BchL 晶体结构,其中在 BchL 和 BchNB 之间的对接界面处,N 端的一个保守的、灵活的区域掩盖了[4Fe-4S]簇。该区域中的氨基酸取代产生了超活跃的酶复合物,表明 N 端在自动抑制中起作用。氢氘交换质谱显示,ATP 结合到 BchL 上会产生特定的构象变化,导致灵活的 N 端从对接界面释放。释放还促进了[4Fe-4S]簇周围局部环境的变化,并促进了 BchL 与 BchNB 的复合物形成。位于 BchL ATP 结合口袋口的一个关键氨基酸补丁,天冬氨酸-苯丙氨酸-天冬氨酸(“DFD 补丁”),促进了两个亚基之间的亚基交叉稳定。一个具有一个有缺陷的 ATP 结合位点的连接 BchL 二聚体不能支持原叶绿素ide 的还原,这说明核苷酸结合到两个亚基是亚基交叉稳定的前提。灵活的 N 端区域掩盖了[4Fe-4S] 簇并抑制了其活性,这是金属蛋白酶中一种新的调节机制。这种机制可能是对真细菌细胞厌氧性质的一种适应,对氧气的耐受性差。