Wu Ye, Hong Yoonmi, Ahmad Sahar, Lin Weili, Shen Dinggang, Yap Pew-Thian
Department of Radiology and Biomedical Research Imaging Center (BRIC), University of North Carolina, Chapel Hill, USA.
Med Image Comput Comput Assist Interv. 2020 Oct;12267:251-259. doi: 10.1007/978-3-030-59728-3_25. Epub 2020 Sep 29.
In this paper, we propose an efficient framework for parcellation of white matter tractograms using discriminative dictionary learning. Key to our framework is the learning of a compact dictionary for each fiber bundle so that the streamlines within the bundle can be sufficiently represented. Dictionaries for multiple bundles are combined for whole-brain tractogram representation. These dictionaries are learned jointly to encourage inter-bundle incoherence for discriminative power. The proposed method allows tractograms to be assigned to more than one bundle, catering to scenarios where tractograms cannot be clearly separated. Experiments on a bundle-labeled HCP dataset and an infant dataset highlight the ability of our framework in grouping streamlines into anatomically plausible bundles.
在本文中,我们提出了一种使用判别字典学习对白质纤维束图进行分割的有效框架。我们框架的关键在于为每个纤维束学习一个紧凑的字典,以便能够充分表示束内的流线。多个束的字典被组合起来用于全脑纤维束图表示。这些字典是联合学习的,以鼓励束间的不相关性,从而增强判别能力。所提出的方法允许将纤维束图分配到多个束,适用于无法清晰分离纤维束图的情况。在一个束标记的人类连接组计划(HCP)数据集和一个婴儿数据集上进行的实验突出了我们框架将流线分组为解剖学上合理的束的能力。