Suppr超能文献

用于快速稳健识别纤维束的轨迹字典学习

Tract Dictionary Learning for Fast and Robust Recognition of Fiber Bundles.

作者信息

Wu Ye, Hong Yoonmi, Ahmad Sahar, Lin Weili, Shen Dinggang, Yap Pew-Thian

机构信息

Department of Radiology and Biomedical Research Imaging Center (BRIC), University of North Carolina, Chapel Hill, USA.

出版信息

Med Image Comput Comput Assist Interv. 2020 Oct;12267:251-259. doi: 10.1007/978-3-030-59728-3_25. Epub 2020 Sep 29.

Abstract

In this paper, we propose an efficient framework for parcellation of white matter tractograms using discriminative dictionary learning. Key to our framework is the learning of a compact dictionary for each fiber bundle so that the streamlines within the bundle can be sufficiently represented. Dictionaries for multiple bundles are combined for whole-brain tractogram representation. These dictionaries are learned jointly to encourage inter-bundle incoherence for discriminative power. The proposed method allows tractograms to be assigned to more than one bundle, catering to scenarios where tractograms cannot be clearly separated. Experiments on a bundle-labeled HCP dataset and an infant dataset highlight the ability of our framework in grouping streamlines into anatomically plausible bundles.

摘要

在本文中,我们提出了一种使用判别字典学习对白质纤维束图进行分割的有效框架。我们框架的关键在于为每个纤维束学习一个紧凑的字典,以便能够充分表示束内的流线。多个束的字典被组合起来用于全脑纤维束图表示。这些字典是联合学习的,以鼓励束间的不相关性,从而增强判别能力。所提出的方法允许将纤维束图分配到多个束,适用于无法清晰分离纤维束图的情况。在一个束标记的人类连接组计划(HCP)数据集和一个婴儿数据集上进行的实验突出了我们框架将流线分组为解剖学上合理的束的能力。

相似文献

1
Tract Dictionary Learning for Fast and Robust Recognition of Fiber Bundles.
Med Image Comput Comput Assist Interv. 2020 Oct;12267:251-259. doi: 10.1007/978-3-030-59728-3_25. Epub 2020 Sep 29.
2
Generative Sampling in Bundle Tractography using Autoencoders (GESTA).
Med Image Anal. 2023 Apr;85:102761. doi: 10.1016/j.media.2023.102761. Epub 2023 Feb 1.
3
FIESTA: Autoencoders for accurate fiber segmentation in tractography.
Neuroimage. 2023 Oct 1;279:120288. doi: 10.1016/j.neuroimage.2023.120288. Epub 2023 Jul 24.
4
Recognition of white matter bundles using local and global streamline-based registration and clustering.
Neuroimage. 2018 Apr 15;170:283-295. doi: 10.1016/j.neuroimage.2017.07.015. Epub 2017 Jul 13.
5
Fiber up-sampling and quality assessment of tractograms - towards quantitative brain connectivity.
Brain Behav. 2016 Oct 26;7(1):e00588. doi: 10.1002/brb3.588. eCollection 2017 Jan.
6
Bounding tractogram redundancy.
Front Neurosci. 2024 Jul 23;18:1403804. doi: 10.3389/fnins.2024.1403804. eCollection 2024.
7
Auto-encoded Latent Representations of White Matter Streamlines for Quantitative Distance Analysis.
Neuroinformatics. 2022 Oct;20(4):1105-1120. doi: 10.1007/s12021-022-09593-4. Epub 2022 Jun 22.
8
White Matter Tract Segmentation as Multiple Linear Assignment Problems.
Front Neurosci. 2018 Feb 6;11:754. doi: 10.3389/fnins.2017.00754. eCollection 2017.
9
Filtering in tractography using autoencoders (FINTA).
Med Image Anal. 2021 Aug;72:102126. doi: 10.1016/j.media.2021.102126. Epub 2021 Jun 7.
10
DeepBundle: Fiber Bundle Parcellation with Graph Convolution Neural Networks.
Graph Learn Med Imaging (2019). 2019;11849:88-95. doi: 10.1007/978-3-030-35817-4_11. Epub 2019 Nov 14.

引用本文的文献

2
A systematic review of automated methods to perform white matter tract segmentation.
Front Neurosci. 2024 Mar 19;18:1376570. doi: 10.3389/fnins.2024.1376570. eCollection 2024.
3
A multimodal submillimeter MRI atlas of the human cerebellum.
Sci Rep. 2024 Mar 7;14(1):5622. doi: 10.1038/s41598-024-55412-y.
5
Highly Reproducible Whole Brain Parcellation in Individuals via Voxel Annotation with Fiber Clusters.
Med Image Comput Comput Assist Interv. 2021 Sep-Oct;12907:477-486. doi: 10.1007/978-3-030-87234-2_45. Epub 2021 Sep 21.
6
Auto-encoded Latent Representations of White Matter Streamlines for Quantitative Distance Analysis.
Neuroinformatics. 2022 Oct;20(4):1105-1120. doi: 10.1007/s12021-022-09593-4. Epub 2022 Jun 22.
7
Quantitative mapping of the brain's structural connectivity using diffusion MRI tractography: A review.
Neuroimage. 2022 Apr 1;249:118870. doi: 10.1016/j.neuroimage.2021.118870. Epub 2022 Jan 1.

本文引用的文献

1
Asymmetry Spectrum Imaging for Baby Diffusion Tractography.
Inf Process Med Imaging. 2019 Jun;11492:319-331. doi: 10.1007/978-3-030-20351-1_24. Epub 2019 May 22.
2
Mitigating gyral bias in cortical tractography via asymmetric fiber orientation distributions.
Med Image Anal. 2020 Jan;59:101543. doi: 10.1016/j.media.2019.101543. Epub 2019 Sep 13.
3
TractSeg - Fast and accurate white matter tract segmentation.
Neuroimage. 2018 Dec;183:239-253. doi: 10.1016/j.neuroimage.2018.07.070. Epub 2018 Aug 4.
4
An anatomically curated fiber clustering white matter atlas for consistent white matter tract parcellation across the lifespan.
Neuroimage. 2018 Oct 1;179:429-447. doi: 10.1016/j.neuroimage.2018.06.027. Epub 2018 Jun 18.
5
The UNC/UMN Baby Connectome Project (BCP): An overview of the study design and protocol development.
Neuroimage. 2019 Jan 15;185:891-905. doi: 10.1016/j.neuroimage.2018.03.049. Epub 2018 Mar 22.
6
Recognition of white matter bundles using local and global streamline-based registration and clustering.
Neuroimage. 2018 Apr 15;170:283-295. doi: 10.1016/j.neuroimage.2017.07.015. Epub 2017 Jul 13.
7
The white matter query language: a novel approach for describing human white matter anatomy.
Brain Struct Funct. 2016 Dec;221(9):4705-4721. doi: 10.1007/s00429-015-1179-4. Epub 2016 Jan 11.
8
Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool.
BMC Med Imaging. 2015 Aug 12;15:29. doi: 10.1186/s12880-015-0068-x.
9
The WU-Minn Human Connectome Project: an overview.
Neuroimage. 2013 Oct 15;80:62-79. doi: 10.1016/j.neuroimage.2013.05.041. Epub 2013 May 16.
10
Fiber clustering versus the parcellation-based connectome.
Neuroimage. 2013 Oct 15;80:283-9. doi: 10.1016/j.neuroimage.2013.04.066. Epub 2013 Apr 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验