Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0356, USA.
Proc Natl Acad Sci U S A. 2010 Feb 2;107(5):1827-32. doi: 10.1073/pnas.0906852107. Epub 2009 Dec 23.
Metal coordination is a key structural and functional component of a large fraction of proteins. Given this dual role we considered the possibility that metal coordination may have played a templating role in the early evolution of protein folds and complexes. We describe here a rational design approach, Metal Templated Interface Redesign (MeTIR), that mimics the time course of a hypothetical evolutionary pathway for the formation of stable protein assemblies through an initial metal coordination event. Using a folded monomeric protein, cytochrome cb(562), as a building block we show that its non-self-associating surface can be made self-associating through a minimal number of mutations that enable Zn coordination. The protein interfaces in the resulting Zn-directed, D(2)-symmetrical tetramer are subsequently redesigned, yielding unique protein architectures that self-assemble in the presence or absence of metals. Aside from its evolutionary implications, MeTIR provides a route to engineer de novo protein interfaces and metal coordination environments that can be tuned through the extensive noncovalent bonding interactions in these interfaces.
金属配位是很大一部分蛋白质的关键结构和功能组成部分。鉴于这种双重作用,我们考虑了金属配位在蛋白质折叠和复合物的早期进化中可能发挥模板作用的可能性。我们在这里描述了一种合理的设计方法,即金属模板界面重新设计(MeTIR),该方法通过初始金属配位事件模拟稳定蛋白质组装形成的假设进化途径的时间过程。我们使用折叠的单体蛋白细胞色素 cb(562)作为构建块,表明其非自组装表面可以通过最小数量的突变变得自组装,这些突变可以使锌配位。在形成的 Zn 导向的 D(2)对称四聚体中,随后对蛋白质界面进行重新设计,产生独特的蛋白质结构,这些结构在有或没有金属的情况下都会自组装。除了具有进化意义外,MeTIR 还提供了一种工程从头设计蛋白质界面和金属配位环境的途径,通过这些界面中的广泛非共价键相互作用可以对其进行调整。