Suppr超能文献

细菌趋化性反应动力学的演变。

Evolution of response dynamics underlying bacterial chemotaxis.

机构信息

Systems Biology Program, College of Engineering, Computing, Mathematics and Physical Sciences, University of Exeter, Exeter, UK.

出版信息

BMC Evol Biol. 2011 Aug 16;11:240. doi: 10.1186/1471-2148-11-240.

Abstract

BACKGROUND

The ability to predict the function and structure of complex molecular mechanisms underlying cellular behaviour is one of the main aims of systems biology. To achieve it, we need to understand the evolutionary routes leading to a specific response dynamics that can underlie a given function and how biophysical and environmental factors affect which route is taken. Here, we apply such an evolutionary approach to the bacterial chemotaxis pathway, which is documented to display considerable complexity and diversity.

RESULTS

We construct evolutionarily accessible response dynamics starting from a linear response to absolute levels of attractant, to those observed in current-day Escherichia coli. We explicitly consider bacterial movement as a two-state process composed of non-instantaneous tumbling and swimming modes. We find that a linear response to attractant results in significant chemotaxis when sensitivity to attractant is low and when time spent tumbling is large. More importantly, such linear response is optimal in a regime where signalling has low sensitivity. As sensitivity increases, an adaptive response as seen in Escherichia coli becomes optimal and leads to 'perfect' chemotaxis with a low tumbling time. We find that as tumbling time decreases and sensitivity increases, there exist a parameter regime where the chemotaxis performance of the linear and adaptive responses overlap, suggesting that evolution of chemotaxis responses might provide an example for the principle of functional change in structural continuity.

CONCLUSIONS

Our findings explain several results from diverse bacteria and lead to testable predictions regarding chemotaxis responses evolved in bacteria living under different biophysical constraints and with specific motility machinery. Further, they shed light on the potential evolutionary paths for the evolution of complex behaviours from simpler ones in incremental fashion.

摘要

背景

预测细胞行为背后复杂分子机制功能和结构的能力是系统生物学的主要目标之一。为了实现这一目标,我们需要了解导致特定反应动力学的进化途径,这种动力学可以作为特定功能的基础,以及生物物理和环境因素如何影响所采取的途径。在这里,我们将这种进化方法应用于细菌趋化途径,该途径被证明具有相当的复杂性和多样性。

结果

我们从线性响应绝对水平的趋化剂开始,构建进化上可访问的响应动力学,从而构建出当前大肠杆菌观察到的响应动力学。我们明确地将细菌运动视为由非瞬时翻滚和游动模式组成的两态过程。我们发现,当对趋化剂的敏感性较低且翻滚时间较长时,对趋化剂的线性响应会导致显著的趋化作用。更重要的是,这种线性响应在信号具有低敏感性的情况下是最优的。随着敏感性的增加,如大肠杆菌中观察到的适应性反应成为最优反应,并导致具有低翻滚时间的“完美”趋化作用。我们发现,随着翻滚时间的减少和敏感性的增加,存在一个参数范围,其中线性和适应性反应的趋化作用性能重叠,这表明趋化作用反应的进化可能为结构连续性中的功能变化原则提供了一个例子。

结论

我们的研究结果解释了来自不同细菌的几个结果,并对生活在不同生物物理约束和具有特定运动机制的细菌中进化的趋化作用反应提出了可测试的预测。此外,它们还揭示了从更简单的行为逐渐进化出复杂行为的潜在进化途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d07/3178535/8419f5c4c65e/1471-2148-11-240-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验