Department of Biology and Biochemistry, University of Bath, Bath, UK.
Mol Syst Biol. 2010;6:340. doi: 10.1038/msb.2009.94. Epub 2010 Jan 19.
It has recently been suggested that the use of optimal codons limits mistranslation-induced protein misfolding, yet evidence for this remains largely circumstantial. In contrast, molecular chaperones have long been recognized to play crucial roles in misfolding prevention and remedy. We propose that putative error limitation in cis can be elucidated by examining the interaction between codon usage and chaperoning processes. Using Escherichia coli as a model system, we find that codon optimality covaries with dependency on the chaperonin GroEL. Sporadic but not obligate substrates of GroEL exhibit higher average codon adaptation and are conspicuously enriched for optimal codons at structurally sensitive sites. Further, codon optimality of sporadic clients is more conserved in the E. coli clone Shigella dysenteriae. We suggest that highly expressed genes cannot routinely use GroEL for error control so that codon usage has evolved to provide complementary error limitation. These findings provide independent evidence for a role of misfolding in shaping gene evolution and highlight the need to co-characterize adaptations in cis and trans to unravel the workings of integrated molecular systems.
最近有人提出,最优密码子的使用限制了翻译错误诱导的蛋白质错误折叠,但这方面的证据在很大程度上仍是间接的。相比之下,分子伴侣长期以来被认为在防止和纠正错误折叠方面发挥着关键作用。我们提出,可以通过考察密码子使用与伴侣蛋白协助过程之间的相互作用来阐明顺式假定的误差限制。我们使用大肠杆菌作为模型系统,发现密码子的最优性与对伴侣蛋白 GroEL 的依赖性相关。GroEL 的偶然但非必需的底物表现出更高的平均密码子适应性,并且在结构敏感位点明显富含最优密码子。此外,大肠杆菌克隆志贺氏菌中的偶然客户的密码子最优性更为保守。我们认为,高表达的基因不能常规地使用 GroEL 进行错误控制,因此密码子使用已经进化到提供互补的错误限制。这些发现为错误折叠在塑造基因进化中的作用提供了独立的证据,并强调需要共同描述顺式和反式的适应,以揭示综合分子系统的工作原理。