Suppr超能文献

用于 Ran GTPase 的Förster(荧光)共振能量转移(FRET)基分子传感器的设计。

The design of Förster (fluorescence) resonance energy transfer (FRET)-based molecular sensors for Ran GTPase.

机构信息

National Cancer Institute, NIH, Bethesda, MD 20892-4256, USA.

出版信息

Methods. 2010 Jun;51(2):220-32. doi: 10.1016/j.ymeth.2010.01.022. Epub 2010 Jan 22.

Abstract

The application of FRET-based molecular biosensors provided confirmation of the central model of Ran GTPase function and led to important new insights into its physiological role. In many fields of cell biology, methods employing FRET are a standard approach that is becoming increasingly accessible due to advances in instrumentation and available fluorophores. However, the optimal design of a FRET sensor remains to be the cornerstone of any successful FRET application. Utilizing the recent literature on FRET applications and our studies on Ran, we outline the basic considerations involved in designing molecular FRET sensors. We point to several broadly applicable principles that were used in many different FRET sensors that can detect a wide range of molecular events. Using the FRET sensors for Ran that we created as examples, we then focus on the practical aspects of FRET assays. We describe the preparation of a bipartite FRET sensor consisting of ECFP-Ran and EYFP-importin beta and its validation as a reporter for FRET-based high throughput screening in small molecule libraries. Finally, we review the design and optimization of monomolecular FRET sensors that monitor the RanGTP-RanBP1 interaction, and of sensors detecting the RanGTP-regulated importin beta cargo release.

摘要

基于荧光共振能量转移(FRET)的分子生物传感器的应用为 Ran GTPase 功能的中心模型提供了证实,并为其生理作用带来了重要的新见解。在细胞生物学的许多领域中,采用 FRET 的方法是一种标准方法,由于仪器和可用荧光团的进步,这种方法变得越来越容易获得。然而,FRET 传感器的最佳设计仍然是任何成功的 FRET 应用的基石。利用关于 FRET 应用的最新文献和我们在 Ran 上的研究,我们概述了设计分子 FRET 传感器所涉及的基本考虑因素。我们指出了在许多不同的 FRET 传感器中广泛应用的几个普遍适用的原则,这些传感器可以检测广泛的分子事件。我们使用我们创建的用于 Ran 的 FRET 传感器作为示例,然后重点介绍 FRET 测定的实际方面。我们描述了由 ECFP-Ran 和 EYFP-importin beta 组成的二分 FRET 传感器的制备,并将其验证为小分子文库中基于 FRET 的高通量筛选的报告物。最后,我们回顾了监测 RanGTP-RanBP1 相互作用的单分子 FRET 传感器的设计和优化,以及检测 RanGTP 调节的 importin beta 货物释放的传感器的设计和优化。

相似文献

1
The design of Förster (fluorescence) resonance energy transfer (FRET)-based molecular sensors for Ran GTPase.
Methods. 2010 Jun;51(2):220-32. doi: 10.1016/j.ymeth.2010.01.022. Epub 2010 Jan 22.
4
Fluorescence resonance energy transfer (FRET)-based biosensors: visualizing cellular dynamics and bioenergetics.
Appl Microbiol Biotechnol. 2012 Nov;96(4):895-902. doi: 10.1007/s00253-012-4449-6. Epub 2012 Oct 6.
5
Recent Advances in Development of Genetically Encoded Fluorescent Sensors.
Methods Enzymol. 2017;589:1-49. doi: 10.1016/bs.mie.2017.01.019. Epub 2017 Mar 9.
6
FÖrster resonance energy transfer (FRET)-based biosensors for biological applications.
Biosens Bioelectron. 2019 Aug 1;138:111314. doi: 10.1016/j.bios.2019.05.019. Epub 2019 May 10.
7
Development of FRET biosensors for mammalian and plant systems.
Protoplasma. 2014 Mar;251(2):333-47. doi: 10.1007/s00709-013-0590-z. Epub 2013 Dec 12.
8
Homotransfer of FRET Reporters for Live Cell Imaging.
Biosensors (Basel). 2018 Oct 11;8(4):89. doi: 10.3390/bios8040089.
9
Genetically Encoded Förster Resonance Energy Transfer-Based Biosensors Studied on the Single-Molecule Level.
ACS Sens. 2018 Aug 24;3(8):1462-1470. doi: 10.1021/acssensors.8b00143. Epub 2018 Jul 18.
10
Characterization of Genetically Encoded FRET Biosensors for Rho-Family GTPases.
Methods Mol Biol. 2018;1821:87-106. doi: 10.1007/978-1-4939-8612-5_7.

引用本文的文献

2
Wearable Smart Contact Lenses for Continual Glucose Monitoring: A Review.
Front Med (Lausanne). 2022 Apr 4;9:858784. doi: 10.3389/fmed.2022.858784. eCollection 2022.
3
Using FLIM-FRET for Characterizing Spatial Interactions in the Spindle.
Methods Mol Biol. 2022;2415:221-243. doi: 10.1007/978-1-0716-1904-9_17.
7
Use of Laser Speckle Contrast Analysis during pelvic surgery in a uterine transplantation model.
Future Sci OA. 2018 Aug 1;4(7):FSO324. doi: 10.4155/fsoa-2018-0017. eCollection 2018 Jul.
8
Use of biomedical photonics in gynecological surgery: a uterine transplantation model.
Future Sci OA. 2018 Feb 6;4(4):FSO286. doi: 10.4155/fsoa-2017-0129. eCollection 2018 Apr.
9
FRAP, FLIM, and FRET: Detection and analysis of cellular dynamics on a molecular scale using fluorescence microscopy.
Mol Reprod Dev. 2015 Jul-Aug;82(7-8):587-604. doi: 10.1002/mrd.22501. Epub 2015 May 25.
10
Chromosomal gain promotes formation of a steep RanGTP gradient that drives mitosis in aneuploid cells.
J Cell Biol. 2013 Jan 21;200(2):151-61. doi: 10.1083/jcb.201206142. Epub 2013 Jan 14.

本文引用的文献

2
Quantum dot-based resonance energy transfer and its growing application in biology.
Phys Chem Chem Phys. 2009 Jan 7;11(1):17-45. doi: 10.1039/b813919a. Epub 2008 Nov 27.
3
Conversion of red fluorescent protein into a bright blue probe.
Chem Biol. 2008 Oct 20;15(10):1116-24. doi: 10.1016/j.chembiol.2008.08.006.
4
In silico description of fluorescent probes in vivo.
J Mol Graph Model. 2008 Nov;27(4):563-7. doi: 10.1016/j.jmgm.2008.08.003. Epub 2008 Aug 23.
6
satFRET: estimation of Förster resonance energy transfer by acceptor saturation.
Eur Biophys J. 2008 Nov;38(1):69-82. doi: 10.1007/s00249-008-0361-5. Epub 2008 Sep 4.
7
Regulation of chromatin binding by a conformational switch in the tail of the Ran exchange factor RCC1.
J Cell Biol. 2008 Sep 8;182(5):827-36. doi: 10.1083/jcb.200803110. Epub 2008 Sep 1.
8
Multiplexed FRET to image multiple signaling events in live cells.
Biophys J. 2008 Nov 15;95(10):L69-71. doi: 10.1529/biophysj.108.139204. Epub 2008 Aug 29.
9
Localized regulation of axonal RanGTPase controls retrograde injury signaling in peripheral nerve.
Neuron. 2008 Jul 31;59(2):241-52. doi: 10.1016/j.neuron.2008.05.029.
10
FRET imaging and in silico simulation: analysis of the signaling network of nerve growth factor-induced neuritogenesis.
Brain Cell Biol. 2008 Aug;36(1-4):19-30. doi: 10.1007/s11068-008-9028-5. Epub 2008 Jul 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验