Department of Biology, Duke University, Durham, North Carolina, USA.
PLoS Genet. 2010 Jan 22;6(1):e1000823. doi: 10.1371/journal.pgen.1000823.
Nutrient stresses trigger a variety of developmental switches in the budding yeast Saccharomyces cerevisiae. One of the least understood of such responses is the development of complex colony morphology, characterized by intricate, organized, and strain-specific patterns of colony growth and architecture. The genetic bases of this phenotype and the key environmental signals involved in its induction have heretofore remained poorly understood. By surveying multiple strain backgrounds and a large number of growth conditions, we show that limitation for fermentable carbon sources coupled with a rich nitrogen source is the primary trigger for the colony morphology response in budding yeast. Using knockout mutants and transposon-mediated mutagenesis, we demonstrate that two key signaling networks regulating this response are the filamentous growth MAP kinase cascade and the Ras-cAMP-PKA pathway. We further show synergistic epistasis between Rim15, a kinase involved in integration of nutrient signals, and other genes in these pathways. Ploidy, mating-type, and genotype-by-environment interactions also appear to play a role in the controlling colony morphology. Our study highlights the high degree of network reuse in this model eukaryote; yeast use the same core signaling pathways in multiple contexts to integrate information about environmental and physiological states and generate diverse developmental outputs.
营养压力会引发出芽酵母酿酒酵母中各种发育转换。其中最不为人知的反应之一是复杂菌落形态的发育,其特征是复杂、有组织和菌株特异性的菌落生长和结构模式。这种表型的遗传基础以及诱导其产生的关键环境信号到目前为止仍知之甚少。通过对多个菌株背景和大量生长条件进行调查,我们表明,可发酵碳源的限制加上丰富的氮源是出芽酵母中菌落形态反应的主要触发因素。使用敲除突变体和转座子介导的诱变,我们证明了调节该反应的两个关键信号网络是丝状生长 MAP 激酶级联和 Ras-cAMP-PKA 途径。我们进一步表明,参与营养信号整合的激酶 Rim15 与这些途径中的其他基因之间存在协同上位性。倍性、交配型和基因型-环境相互作用似乎也在控制菌落形态中发挥作用。我们的研究强调了这个模式真核生物中高度的网络重用;酵母在多个上下文中使用相同的核心信号通路来整合有关环境和生理状态的信息,并产生不同的发育输出。